За что получил нобелевскую премию прохоров. Нобелевские лауреаты: Александр Прохоров

Я имел счастье работать с этим человеком более 32 лет и никогда не переставал удивляться проявлениям его гениальности, всякий раз открывая новые грани его многочисленных талантов. Что вспоминается прежде всего, когда его уже почти 15 лет нет с нами, а есть лишь замечательный памятник на пересечении Ленинского и Университетского проспектов и острые эмоции расставания давно улеглись? Невероятно развитое чувство интуиции, поразительная по своей быстроте способность находить верные решения, обостренное чувство нового, принципиально значимого для прыжка в будущее, человечность. Но чувство переднего края науки, тенденций ее развития - это, пожалуй, главное в характеристике этого феноменального ученого.

Институту на стадии его становления в 1980-е годы повезло с лидером. Состояние высшего напряжения в поиске единственно верных на тот момент решений опытной рукой дирижера сменялось на веселье от удачной шутки, остроты, анекдота. Если за время встречи на семинаре ты не узнавал чего-то разящего наповал, это значило, что ты просто чего-то не понял, что ты не в форме.

Громкий смех из кабинета, время от времени слышимый даже в отдаленных частях коридора, подтверждал: всё в порядке, продолжаем двигаться вперед, живем.

Поиски решения даже в безумно трудной ситуации, когда его очевидно нет и взять негде, - это тоже школа Прохорова. Здесь важно прежде всего думать о деле, а не о себе, не бояться сделать ошибку. Ошибку можно исправить, а потерянное время не вернуть никогда. Хорошим примером является целостный по содержанию букет решений времен начала перестройки. Вот одно из них: в самый трудный момент, когда науку только что выбросили за борт, нужно было быстро осмыслить фразу «Можно всё, что не запрещено законом». Решение было простым и эффективным: дать свободу отделам и лабораториям, вести внешнеэкономическую деятельность на контрактной и «грантной» основах. При этом ни бухгалтерия, ни плановый отдел просто не имели специалистов для перелопачивания груды бумаг на всевозможных импортных языках. Ученые с мировыми именами (а в институте их было несколько десятков), которые объехали мир и хорошо понимали, как устроен «загнивающий Запад» с его преимущественно контрактной формой финансирования науки, быстро освоились и обеспечили плавный переход на новые формы работы.

Александр Михайлович Прохоров был выдающимся воспитателем талантов - молодых и не очень. Воспитывала, в частности, демократичность подхода во всем и справедливость принимаемых решений. Никаких привилегий: любой сотрудник мог рассчитывать на то, что будет выслушан и поддержан. Даже сыну, который и сейчас работает в институте, очень часто доставалось. Регалии прошлого в расчет не принимались, каждый день нужно было доказывать свою правоту. Всегда в споре кто-то бывал не прав, но это не повод для ярлыка, завтра будет наоборот - надо работать, и всё будет в порядке. Обычный вопрос: «Что нового?» - и тут же с улыбкой ответ за собеседника: «Ничего!» Это была обычная форма диалога, полезная для начала разговора на следующий день - вчера вечером разошлись, а сегодня утром могут и должны быть научные новости.

Мы много времени проводим в лаборатории, часто упуская что-то из житейских мелочей. Нужно что-то сделать для ребенка, помочь матери или близкому родственнику и т. д. Но бывают и серьезные ситуации, когда кажется, что решения нет и помощь не придет. И здесь (и это было хорошо известно в научном мире) лучшее решение - идти к Прохорову. Шли не только наши, но и из других институтов, знали - не откажет; если есть возможность помочь - поможет. Стен приемной Александра Михайловича не хватило бы для размещения благодарностей людей за оказанную им помощь. Даже если каждому уделить только одну строчку.

Простота в общении с окружающими - еще одна отличительная особенность Прохорова. Уважение и всегда ровный тон в разговоре, без подчеркивания ранга участников. Будь то студент или специфически воспитанный чиновник госаппарата, не имеет значения. Важным параметром являлся только уровень интеллекта.

«Наш калибр»

Демократичность характера Александра Михайловича проявилась уже при первом нашем знакомстве. В 1970 году я заканчивал МИФИ, делал диплом на кафедре вице-президента АН Михаила Дмитриевича Миллионщикова. Задача была очень интересная: я пытался с помощью мощного импульсного лазера получать многозарядные ионы очень высокой кратности. Однажды под давлением Михаила Дмитриевича, который считал, что полученные результаты понравятся «лазерщикам», я решился позвонить Александру Михайловичу. Он внимательно выслушал меня и пригласил для беседы в мекку лазерной физики того времени - ФИАН. Мы говорили о моей дипломной работе, связанной с использованием мощных лазеров для генерации многозарядных ионов из твердого тела. Удалось впервые получить ионы тяжелых металлов с зарядностью до +30. Было понятно, что испарение вещества и его нагрев приводят к плазменному состоянию. На переднем фронте разлетающейся плазмы произойдет разделение зарядов электронов и ионов, электроны потянут за собой ионы, и сформируется поток ионов высокой зарядности в виде пучка по нормали к поверхности мишени, произойдет своеобразная самофокусировка пучка.

Но в этом случае, сказал Прохоров, мы получим простой и эффективный источник многозарядных ионов без применения каких-либо вытягивающих или фокусирующих полей. И если раньше на ускорителях разгоняли до высоких энергий протоны, то при работе с многозарядными ионами сразу во много раз могла бы возрасти энергия ускоренной частицы. Это позволило бы сделать важный шаг в получении релятивистских пучков сложных ядер. Сегодня все знают об экспериментах с накопителями многозарядных ионов в ЦЕРН, а тогда об этом можно было только мечтать. Но Александр Михайлович умел мечтать как никто другой.

Вскоре он взял меня в свою лабораторию. Осмотрев меня со всех сторон, он изрек: «Наш калибр». Дело в том, что я с детства был высокого роста и всегда стеснялся этого. Но сам Прохоров и многие сотрудники Лаборатории колебаний ФИАН были ростом под два метра. Этот факт был предметом многих шуток и даже анекдотов.

У Александра Михайловича были своеобразные привычки. Например, он любил, когда в комнате тепло, ну очень тепло, просто Сахара. «А зачем греть комнату своим теплом?» Высидеть долго в его кабинете было не так-то просто, нагреватели стояли непосредственно за спиной посетителя. Для кого термодинамическое равновесие, а для кого тепловое экранирование начальника.

Тогда же я впервые познакомился с его выдающейся бессменной помощницей Лидией Митрофановной Кальченко. Трудно переоценить ее вклад в научные успехи всего коллектива.

Лазеры для войны и мира

Еще на заре лазерной революции, когда ажиотаж военных применений перехлестывал все возможные пределы, Прохоров начал внедрять в сознание сотрудников института и разных начальников идеи об эффективном использовании «мирного лазера» для лечения и в биологических исследованиях. В наши дни хорошо известны многочисленные лазерные методы диагностики, лечения, а также применения в косметологии. Сейчас трудно представить себе, как медики обходились ранее без лазерной техники.

Другой пример касается непосредственно военных применений. Лазер может применяться и активно применяется и в решении военных задач, и это уже давно не секрет. Он режет, плавит, снижает механическую устойчивость конструкций, обеспечивает передачу механического импульса и силовой режим поражения военной техники. Именно поэтому внимание военных было обращено на перспективу использования лазеров именно в военных целях - как только заработал первый лазер, у военных загорелись глаза. Воображение - спасибо роману Алексея Толстого - рисовало невероятные картины того, что могло сделать лазерное оружие.

Александр Михайлович с энтузиазмом взялся за создание мощных лазерных систем для промышленных и военных целей. Бюджет Института в то время лишь на одну треть состоял из денег, приходивших от Академии наук, большую часть нам давала промышленность. Живая и требовательная, она каждый день стучала в двери Института, обеспечивая нас новыми заказами. Огромная заслуга в том, что мы не простаивали без дела, принадлежит Прохорову. Он сумел наладить хорошие контакты с промышленным производством и военными.

В самом начале лазерного пути мы стояли перед выбором: начать разработку лазеров для так называемого силового поражения (дыра в корпусе ракеты, отпиленное крыло самолета) или выбрать второе направление - функциональное, когда из строя выводилась электроника, оптические системы и провоцировались всякого рода триггерные эффекты в элементах техники. Нужно было обладать глубокими знаниями в этом вопросе и даром предвидения, чтобы сделать верный шаг. И А.М., как показало время, оказался прав, утверждая, что нам следует развивать именно функциональное поражение. Американцы назвали это «умным взаимодействием». В 1973 году он написал письмо на имя маршала Гречко, утверждая, что силовое поражение в ближайшие 30–40 лет недостижимо и необходимо развивать поражение функциональное. К сожалению, к совету не прислушались - за этим решением не стояли быстрые финансовые выгоды для оборонного комплекса, нужно было кропотливо работать при гораздо меньшем финансировании. Прохоров долго и настойчиво доказывал свою правоту, и сейчас на 90% современное лазерное оружие - исключительно второго типа. А силовое оружие пока так и не вышло на уровни мощности, требуемые для решения стратегических задач.

Лазеры и кровеносная система

Мне повезло работать с Александром Михайловичем над очень серьезными проблемами. Образ мыслей его был оригинальным, он умел посмотреть на проблему с нестандартной точки зрения. Например, при работе с мощными лазерами возникла необходимость в эффективном способе охлаждения зеркал резонатора, которые - зеркала не бывают идеальными - поглощали огромные плотности мощности. Эффект, с которым мы впервые столкнулись по мере нарастания выходной мощности лазеров, показал: дальнейшее увеличение мощности лазера невозможно, поскольку зеркала нагревались и деформировались. Из-за этих искажений мощность лазера начинала падать, а расходимость луча - увеличиваться.

Чтобы решить эту проблему, нужно было научиться отводить большое количество тепла, обычно это решалось прокладыванием каналов в теле зеркала, по которым гнали воду. В работе с оптикой эти каналы должны быть очень тонкими, а воды должно быть много. Но жидкость не может продавливаться в большом количестве через тонкие каналы, а при повышении потока возникали вибрации, искажавшие поверхность.

А.М. поддержал мою идею о возможном подобии системы охлаждения зеркала кровеносной системе человека, в которой последовательно от крупной магистрали кровотока ответвляются сотни более мелких, еще более мелких и т. д. микрокапилляров, чтобы потом вновь собраться в единый макроканал. И всё это должно произойти в зеркале на масштабе нескольких сантиметров. Пятнадцатилетние разработки конструкционных моделей и технологий увенчались успехом. Наш коллектив в 1982 году за цикл работ по силовой оптике был отмечен Государственной премией СССР.

Над проблемой охлаждения резонатора американцы работали параллельно с нами, совершенно независимо, и решили ее примерно так же. Когда в 1990-е годы началось братание с США, я получил приглашение посетить фирмы, которые как раз в то время занимались силовой оптикой, и убедился, что достигнутые параметры зеркал оказались очень близкими; похожи были и конструктивные особенности этих зеркал. До настоящего времени эта технология не продается на международном рынке, потому что любая страна сможет тут же выйти на уровни мегаваттных мощностей и получит доступ к созданию лазерного оружия. Продаются зеркала небольшого уровня мощностей, пригодные лишь для технологических лазеров.

Поездки на Запад

В 1983 году США объявили о начале работ по долгосрочной программе «Стратегическая оборонная инициатива» и о проведении международного симпозиума по этой программе в Лас-Вегасе. Были приглашены директор ФИАН Николай Геннадиевич Басов и Александр Михайлович. Это был сложный политический момент - их присутствие на мероприятии придало бы гораздо больше значимости программе США. И в ЦК КПСС решили: «Не ехать». Но поскольку понять, что происходит, хотелось, решили послать двух молодых ученых. В лаборатории раздался звонок, меня подозвали к телефону и сказали, чтобы я через час был на Старой площади. На следующий день я и мой коллега из соседнего института улетели в США. Моя оценка предлагаемой программы была негативной. Анализ физических процессов позволял сделать вывод, что существующими лазерными системами задача не решается, а динамика развития и сложность задач по масштабированию лазерных систем указывали, что решение поставленных в США задач откладывается минимум на 50 лет.

А. М. Прохоров, так же как и Н. Г Басов, много сил тратил на то, чтобы отправлять ученых после защиты кандидатской диссертации на Запад для стажировки. Перед поездкой в Лас-Вегас я только вернулся из полугодовой стажировки в Канаде. Тогда такой выезд был равносилен чуду, большинство молодых ученых не могло об этом даже и мечтать. Вызывая к себе сотрудника, Александр Михайлович любил начать беседу о стажировке шуткой: «Скажите, а как Вы относитесь к хорошей колбасе, к баварским сосискам?» У нас в то время с такими деликатесами было трудно, ходили так называемые колбасные электрички. Выезды за рубеж давали колоссальную возможность сопоставить свои достижения с тем, что сделано в мире, а также эффективно выучить язык. А когда началась перестройка и настали нелегкие времена для науки, именно те люди, которые хорошо владели языком и обладали связями за рубежом, начали находить международные контракты. У нас в институте было несколько десятков таких людей, именно они питали ИОФ АН в трудные времена; у нас образовалось несколько десятков акционерных обществ. Прохорову хватило мудрости отпустить бюрократические вожжи, позволить людям свободно работать.

О месте в истории

Сегодня невозможно представить нашу жизнь без лазеров в самом широком спектре их применения. В одном ряду с разработкой лазера стоят открытия электрона, электромагнетизма, атомной энергии, пенициллина, эволюционных принципов биологической жизни на земле, химических превращений элементов, транзистора, компьютера.

Мы всё дальше уходим по временной шкале от точки нашего расставания с учителем и другом. Ушла острая боль утраты, исчезли мелкие детали, имевшие второстепенное значение, и нарастает ощущение продолжающегося воздействия на всех нас его интеллекта, его личности. И я благодарен судьбе за то, что довелось многие годы быть рядом с А. М. Прохоровым. Я никогда не жалел о том, что связал свою жизнь с коллективом Лаборатории колебаний ФИАН им. П. Н. Лебедева, переросшей в Институт общей физики, в 2002 году названный в честь Александра Михайловича Прохорова.

Алекса́ндр Миха́йлович Про́хоров (11 июля 1916, Атертон, штат Квинсленд, Австралия - 8 января 2002, Москва) - выдающийся советский физик, один из основоположников важнейшего направления современной физики - квантовой электроники, лауреат Нобелевской премии по физике за 1964 год, один из изобретателей лазерных технологий.

Родился Александр в Австралии. Да-да, именно туда забросило его родителей в поисках лучшей жизни. К сожалению, в Австралии у них не сложилась жизнь, и семейство вернулось в Россию. Там Александр пошел в школу, с отличием ее окончил и поступил на физический факультет в Ленинградский государственный университет. В 1929 году Прохоров стал аспирантом Физического института АН СССР им. Лебедева в Москве. Первым исследованием юного ученого становится изучение распространения радиоволн над поверхностью Земли. Александр изобретает абсолютно новый метод исследования ионосферы, при помощи интерференции радиоволн. Началась Великая Отечественная война и Прохоров отправляется на фронт. Он воюет почти до самого окончания войны, а после второго серьезного ранения возвращается в институт ФИАН.

Кандидатом наук Прохоров стал в 1946 году. «Теория нелинейных колебаний» - тема его диссертационных исследований. За эту работу ученый даже получил премию. В 1947 году в ФИАНе запустили синхротрон, с помощью которого Прохоров изучает излучения электронов. Эти исследования легли в его диссертацию, которую ученый защитил в 1951 году. В 1950 году Александр стал зам. директора Лаборатории колебаний. В то же время ученый погружается в изучение радиофизики. Он исследует вместе с другими учеными вращательные и колебательные спектры молекул. Прохоров ставит эксперименты и в то же время разрабатывает теорию явлений, которые он наблюдает. В 50-е годы судьба Прохоров связывается с Николаем Басовым, который тогда был аспирантом ФИАНа. Они работают вместе и пишут различные научные статьи. Вместе они разработали молекулярные генераторы.

В 1952 году ученые излагают результаты своих работ на Всесоюзной конференции по радиоспектроскопии. Параллельно с ними над похожей темой работал в Колумбийском университете ученый Ч. Таунс. В 1964 году всем троим присудили Нобелевскую премию. После этого разошлись пути Прохорова и Басова. В 1954 году Прохоров создал новые лаборатории – квантовой радиофизики и радиоастрономии, а сам ученый был уже директором Лаборатории колебаний. Профессором МГУ ученый стал в 1957 году. Его считают основоположником многих современных направлений науки и техники. В 1982 году был создан Международный журнал «Лазерная физика». Этим журналом руководил сам Прохоров. Позже образовался Институт общей физики РАН, где директором был Александр Прохоров. Ученый продолжал руководить многими проектами и лабораториями. Для науки Александр Прохоров сделал невероятно много, ведь всем известно, что сочетание мудрости и энергии всегда давало впечатляющие результаты. Умер ученый в Москве в 2002 году.



Прохоров Александр Михайлович – выдающийся российский советский физик, один из основоположников квантовой электроники, создатель научной школы, директор Лаборатории колебаний в Физическом институте имени П.Н.Лебедева, создатель и директор Института общей физики Академии наук СССР (ИОФАН), доктор физико-математических наук, профессор, академик АН СССР.

Родился 28 июня (11 июля) 1916 года в городе Атертон (Австралия), куда из сибирской ссылки бежали его родители-революционеры – Михаил Иванович Прохоров (1880-1942) и Мария Ивановна Михайлова (1887-1943). Русский. В 1923 году семья Прохоровых вернулась в Советскую Россию.

В 1939 году Прохоров с отличием окончил физический факультет Ленинградского государственного университета. В том же году поступил в аспирантуру в Лабораторию колебаний Физического института имени П.Н.Лебедева АН СССР (ФИАН) в Москве. Здесь он изучал распространение радиоволн над земной поверхностью и вместе с одним из своих руководителей, физиком В.В.Мигулиным, разрабатывал новый метод использования интерференции радиоволн для исследования ионосферы – одного из верхних слоев атмосферы.

Участник Великой Отечественной войны. На фронте с 1941 года, воевал в разведке, был дважды ранен.

В 1944 году был отозван с фронта на работу в ФИАН, где занимался исследованием частотной стабилизации в ламповых генераторах. Кандидатская диссертация, которую Прохоров защитил в 1946 году, была посвящена теории нелинейных колебаний. За эту работу ему и двум другим физикам присуждена премия имени академика Л.И.Мандельштама.

В 1947 году Прохоров приступил к исследованию излучения, испускаемого электронами в синхротроне (устройстве, в котором заряженные частицы, например протоны или электроны, движутся по расширяющимся циклическим орбитам, ускоряясь до очень высоких энергий), и показал экспериментально, что излучение электронов сосредоточено в микроволновой области, где длины волн порядка сантиметров. Эта работа легла в основу диссертации на соискание ученой степени доктора физико-математических наук, которую Прохоров защитил в 1951 году.

После назначения заместителем директора Лаборатории колебаний в 1950 году научные интересы Прохорова переместились в область радиоспектроскопии. Он организовал группу молодых исследователей, которые, используя радар и радиотехнику, разработанную главным образом в США и Великобритании во время и после Второй мировой войны, исследовали вращательные и колебательные спектры молекул. Прохоров сосредоточил свои исследования на одном классе молекул, называемых асимметричными волчками, которые обладают тремя различными моментами инерции (анализировать структуру таких молекул по вращательным спектрам особенно трудно). Помимо чисто спектроскопических исследований, Прохоров провел теоретический анализ применения микроволновых спектров поглощения для усовершенствования эталонов частоты и времени. Полученные выводы привели его к сотрудничеству с Н.Г.Басовым в разработке молекулярных генераторов, называемых ныне мазерами (аббревиатура из первых букв английских слов: микроволновое усиление с помощью индуцированного стимулированного излучения – microwave amplification by stimulated emisson of radiation).

Прохоров и Басов предложили метод использования индуцированного излучения. Если возбужденные молекулы отделить от молекул, находящихся в основном состоянии, что можно сделать с помощью неоднородного электрического или магнитного поля, то тем самым можно создать вещество, молекулы которого находятся на верхнем энергетическом уровне. Падающее на это вещество излучение с частотой (энергией фотонов), равной разности энергий между возбужденным и основным уровнями, вызвало бы испускание индуцированного излучения с той же частотой, то есть вело бы к усилению. Отводя часть энергии для возбуждения новых молекул, можно было бы превратить усилитель в молекулярный генератор, способный порождать излучение в самоподдерживающемся режиме.

Прохоров и Басов сообщили о возможности создания такого молекулярного генератора на Всесоюзной конференции по радиоспектроскопии в мае 1952 года, но их первая публикация относится к октябрю 1954 года. В 1955 году они предложили новый «трехуровневый метод» создания мазера. В этом методе атомы (или молекулы) с помощью «накачки» загоняются на самый верхний из трех энергетических уровней путем поглощения излучения с энергией, соответствующей разности между самым верхним и самым нижним уровнями. Большинство атомов быстро «сваливается» на промежуточный энергетический уровень, который оказывается плотно заселенным. Мазер испускает излучение на частоте, соответствующей разности энергий между промежуточными и нижним уровнями.

Будучи директором Лаборатории колебаний в Физическом институте имени П.Н.Лебедева (с 1954), Прохоров создал две новые лаборатории – радиоастрономии и квантовой радиофизики. Он консультировал многочисленные научно-исследовательские институты по проблемам квантовой электроники и организовал лабораторию радиоспектроскопии в Научно-исследовательском институте ядерных исследований при Московском государственном университете, профессором которого Прохоров стал в 1957 году.

С середины 1950-х годов Прохоров сосредоточивает усилия на разработке мазеров и лазеров и на поиске кристаллов с подходящими спектральными и релаксационными свойствами. Проведенные им подробные исследования рубина, одного из лучших кристаллов для лазеров, привели к широкому распространению рубиновых резонаторов для микроволновых и оптических длин волн. Чтобы преодолеть некоторые трудности, возникшие в связи с созданием молекулярных генераторов, работающих в субмиллиметровом диапазоне, Прохоров предложил новый открытый резонатор, состоящий из двух зеркал. Этот тип резонатора оказался особенно эффективным при создании лазеров в 1960-е годы.

В 1964 году «за фундаментальную работу в области квантовой электроники, которая привела к созданию генераторов и усилителей, основанных на лазерно-мазерном принципе» Прохоров Александр Михайлович и Басов Николай Геннадиевич , а также американский физик Чарлз Хард Таунс разделили между собой присужденную им Нобелевскую премию по физике. Два советских физика уже получили к тому времени за свою работу Ленинскую премию в 1959 году.

В 1960 году был избран членом-корреспондентом, в 1966 году – действительным членом (академиком) Академии наук СССР (с 1991 года – Российская академия наук). С 1970 года член Президиума, с 1973 года – академик-секретарь Отделения общей физики и астрономии АН СССР.

Указом Президиума Верховного Совета СССР от 13 марта 1969 года за большие заслуги в развитии советской науки Прохорову Александру Михайловичу присвоено звание Героя Социалистического Труда с вручением ордена Ленина и золотой медали «Серп и Молот».

Институт общей физики Академии наук СССР (ИОФАН), созданный в 1983 году, – детище Прохорова – был назван так не случайно и в полной мере оправдывает свое название широтой направлений научных исследований. Был директором ИОФАН до 1998 года.

С 1969 года председатель Научно-редакционного совета издательства «Большая Советская энциклопедия», был главным редактором 3-го издания «Большой Советской энциклопедии» (1969-1978), а также новой, «Большой Российской энциклопедии», Энциклопедического словаря «Физика».

Несмотря на большие трудности с финансированием, Институт общей физики, завоевавший за короткий срок своего существования высокий авторитет в России и за рубежом, продолжает успешно работать. И центром научной жизни, как и всегда, оставался Прохоров. Его волновали крупные проблемы, такие как экология, лазерная медицина, нанотехнологии, новые материалы, волоконно-оптическая связь. И как всегда при обсуждении научных проблем, у Александра Михайловича Прохорова загорались глаза и рождались новые идеи и подходы к решению этих проблем.

Указом Президиума Верховного Совета СССР от 10 июля 1986 года награжден орденом Ленина и второй золотой медалью «Серп и Молот».

1990-е годы были временем драматических событий в стране, оказавших глубокое воздействие на многие сферы деятельности общества, в частности, на науку. Это не могло не сказаться и на Институте общей физики РАН, и на судьбах его сотрудников. Необходимость научного выживания в новых условиях привела к реорганизации Института общей физики. В институте был образован ряд научных центров со статусом юридического лица: Центр естественно-научных исследований (ЦЕНИ, директор – академик А.М.Прохоров), Научный центр волоконной оптики при ИОФ РАН (НЦВО при ИОФ РАН, директор – академик Е.М.Дианов), Научный центр лазерных материалов и технологий (НЦЛМиТ, директор – академик В.В.Осико), Научный центр волновых исследований (НЦВИ, директор – академик Ф.В.Бункин).

Действительный член Российской академии естественных наук (1990). В последние годы жизни Прохоров был президентом Академии инженерных наук РФ. Член Совета по научно-технической политике при Президенте Российской Федерации (1995-2002).

Награждён советскими 5 орденами Ленина (27.04.1967, 13.03.1969, 17.09.1975, 11.05.1981, 10.07.1986), орденом Отечественной войны 1-й степени (11.03.1985), российским орденом «За заслуги перед Отечеством» 2-й степени (7.06.1996), медалями, в том числе «За отвагу» (6.08.1946), а также орденами и медалями иностранных государств, в том числе орденом Мира и Дружбы (1975, Венгрия), орденом Кирилла и Мефодия 1-й степени (1979, Болгария).

Лауреат Ленинской премии (1959), Государственной премии СССР (1980) и РФ (1998), премии Совета Министров СССР (1988, 1989), Нобелевской премии по физике (1964). Награждён Большой золотой медалью имени М.В.Ломоносова АН СССР (1987).

Иностранный член Академии наук Чехословакции (1982), почетный член Венгерской Академии наук (1976), Академии наук ГДР (1977), Американской академии наук и искусств в Бостоне (США, 1972). Почётный доктор наук Делийского (1967), Бухарестского (1971), Клужского (Румыния, 1977) университетов и Пражского политехнического института (1980).

В Москве на здании Института общей физики РАН, носящего его имя, установлена мемориальная доска.

Лауреат Нобелевской премии, дважды Герой Социалистического Труда, лауреат Ленинской и Государственных премий, академик РАН

Родился 11 июля 1916 года в городе Атортон в Австралии. Отец – Прохоров Михаил Иванович (1880-1942). Мать - Прохорова Мария Ивановна (1887-1943). Супруга - Прохорова Галина Алексеевна (1913-1993). Сын - Прохоров Кирилл Александрович (1945 г.рожд.), кандидат физико-математических наук. Внук - Прохоров Александр Кириллович (1975 г.рожд.). Внучка–Прохорова Дарья Кирилловна (1986 г. рожд.).

Отец Александра Михайловича был человеком незаурядным, с сильным независимым характером революционера-бунтаря. До сих пор в бывшем Музее революции хранится его фотография анфас и в профиль из архива ташкентской охранки. Михаил Иванович Прохоров родился на Украине в семье заводского рабочего. Окончил церковноприходскую школу и начал работать на производстве модельщиком - создавал модели для отливки деталей. В 1902 году вступил в организацию РСДРП в городе Мариуполе. Позже перебрался в город Балашов Саратовской губернии. Вел активную подпольную работу - распространял секретную литературу, хранил типографию, вел организационную работу. В 1904 - 1905 годах работал в Оренбурге под политической кличкой "Михаил 1-й". В 1906 году был арестован и освобожден до суда. Так оказался в Ташкенте и в течение двух лет состоял членом комитета Туркестанской организации РСДРП и членом "Красного Креста". Здесь у него была партийная кличка "Туча", что абсолютно не соответствовало его жизнерадостной, доброй натуре.

На станции Туркестан, в поезде, Михаил Иванович был арестован и препровожден в Ташкент, где 25 октября 1910 года был осужден окружным судом по статье 102-й за принадлежность к РСДРП (б). Приговор суда в 1911 году - ссылка на вечное поселение в Сибирь, в Енисейскую губернию.

Мама Александра Михайловича - Мария Ивановна - тоже из семьи рабочего из Оренбурга. Женщина, получившая только начальное образование, но от природы умная, энергичная, она производила впечатление образованного, интересного человека с широким кругозором. В Оренбурге их и свела судьба. Будучи невестой Михаила Ивановича, после его ссылки в Сибирь Мария Ивановна с помощью товарищей-подпольщиков достает для будущего мужа паспорт на чужое имя и отправляется к жениху в Енисейскую губернию.

В 1912 году Михаил Иванович уже с женой бегут из ссылки на Дальний Восток, а оттуда - в Австралию. Там, на северо-востоке в штате Квинсленд обосновалась колония русских. К ним и примкнула молодая чета Прохоровых, начавшая на первых порах заниматься сельским хозяйством.

Трое дочерей родились в чисто русской семье в далекой от России Австралии: старшая дочь Клавдия, затем - Валентина и Евгения. В городе Атортон родился первый и единственный сын в семье Прохоровых, которого назвали Александром.

Воспоминания Александра Михайловича о его первых годах жизни коротки и отрывочны - очень тепло, кругом густые леса со множеством ярких птиц и бабочек. Товарищей не было. Четверо детей Прохоровых развлекали друг друга. Любимой их игрой было влезать на тонкое дерево и ждать там, когда другие подрубят его. Деревце падало вместе с сидящим на нем. Очень хорошо запомнился поход за лесными орехами. Самое яркое воспоминание тех лет носит, однако, трагический характер. Шуре было около пяти лет, когда однажды родители вместе со старшими детьми ушли, оставив мальчика дома одного. Родители долго не возвращались. Скучно одному. Маленький Шура решил их встретить. Пошел по лесной дороге и заблудился.

Наступила темнота. Мальчик метался по лесу. Растения жгли и царапали. Он путался в лианах. В конце концов устал, сел и всю ночь просидел не шевелясь, прислушиваясь к ночным шорохам леса. А тем временем все жители колонии метались по лесу в поисках ребенка. Нашла его утром старшая сестра Клава. Шура был исцарапан, изранен, обожжен. Родители плакали, смеялись, целовали его. И мальчик почувствовал себя героем. Капризничая, он начал требовать, чтобы ему волосы завязывали бантами. По-видимому, привилегия сестер ходить с бантами вызывала у него тайную зависть.

В эмиграции в семье Прохоровых произошло большое несчастье. Их старшая дочь Клава, которая уже училась в пансионе, была способной ученицей и общей любимицей педагогов и подруг, заболела воспалением легких и через несколько дней умерла. Это горе на всех оставило неизгладимый след.

Услышав о революции в России, семья Прохоровых стала собираться на Родину. Возвращение было нелегким и длительным. Сначала в 1923 году, переплыв океан, семья обосновалась в Шанхае. Затем через Владивосток направились дальше на запад и приехала в родной город Марии Ивановны - в Оренбург. Однако вскоре решили перебраться в Ташкент: болели дети, плохо переносили суровую зиму после знойной Австралии. Жизнь на Родине начиналась непросто. Еще одно несчастье постигло семью Прохоровых. Умирает от столбняка дочь Валя.

В Ташкенте Александр впервые переступил порог русской школы. Учился хорошо. С 5-го класса начались математика и физика. По этим предметам у него проявились наибольшие успехи. Но особой увлеченности пока ни в чем не было. Больше его привлекали игры на улице с другими детьми. Играли в лапту, бегали купаться на реку Салар. Иногда случались драки между "коренными" ребятами с разных улиц. Если ватаги ребят встречали незнакомого мальчика, задавали вопрос: "С какой улицы?" И независимо от ответа ему доставалось. Но Шура никогда не был зачинщиком драк. Наоборот, иногда ему приходилось обходить опасную улицу.

В 1930 году семья Прохоровых переехала в Ленинград. Здесь Саша Прохоров успешно окончил семилетку и без экзаменов был принят на рабфак при Ленинградском электротехническом институте имени Ульянова-Ленина. В это же время у него началось увлечение радиоделом. В этот же период в летние каникулы любимым его занятием было решение задач по математике и физике.

Ленинград сыграл в судьбе Александра Михайловича определяющую роль.

В те годы северная столица, несомненно, была научным центром страны. Здесь в 1920-е годы открылся первый в Советском Союзе Физико-технический институт. Здесь А.Ф. Иоффе создал свою знаменитую школу экспериментальной физики. Здесь царила особая научная обстановка.

Дальнейший путь Александра Прохорова был уже определен. В 1934 году, успешно окончив рабфак, он без колебаний подает документы на физический факультет Ленинградского университета и в том же году без экзаменов поступает туда. Еще учась на рабфаке, он поступил на Высшие курсы английского языка. Учеба на английском языке в Австралии и занятия на этих курсах очень помогли ему в будущем, когда он стал научным работником.

Начинается новая интересная жизнь студента-первокурсника. Это была пора увлеченности учебой, знакомства с новыми товарищами, увлечения альпинизмом, радости от ощущения молодости, здоровья, сил.

На физическом факультете в те годы подобрался сильный преподавательский состав - цвет советской и мировой науки. Член-корреспондент Сергей Эдуардович Фриш прекрасно читал курс общей физики. Электродинамику читал профессор Бронштейн. На старших курсах преподавали академик Владимир Александрович Фок, член-корреспондент Евгений Федорович Гросс, профессора Крутков, Лукирский, Ельяшевич. Семинары вел Борис Сергеевич Джелепов. Ему приглянулся 190-сантиметровый верзила, готовый сутками не отходить от приборов, и он взял Александра во время практики на должность лаборанта.

В семье Александр Прохоров также испытывал радость и легкость. В свободное время увлекался велосипедом.

В зимнее время было увлечение лыжами. На два курса старше, тоже на физическом факультете университета, училась его сестра Женя, которая уже успела окончить высшие курсы английского языка.

В 1939 году Александр Прохоров с отличием защищает диплом, и ему предлагают место ассистента на физическом факультете. Но судьба повернулась иначе. Как одного из лучших выпускников его приглашают в Москву, в аспирантуру Физического института Академии наук СССР имени П. Н. Лебедева.

В сентябре 1939 года А.М. Прохоров впервые переступил порог института, в котором проработал впоследствии почти 40 лет.

Поначалу ему предложили заниматься акустикой. Но Александр Михайлович был верен радиофизике. В ФИАНе была лаборатория колебаний, возглавляемая академиком Н.Д. Папалекси. Это как раз было то, к чему влекло аспиранта Прохорова. Он был принят в эту лабораторию, и его работа как экспериментатора началась. Кроме Николая Дмитриевича Папалекси, научное руководство осуществлял академик Леонид Исаакович Мандельштам, внесший много ценного в тематику лаборатории. Занятия еще больше увлекли и вселили уверенность в правильности избранной специальности молодого аспиранта. Непосредственным его руководителем был кандидат наук, впоследствии академик АН СССР Владимир Васильевич Мигулин.

Очень скоро Александр Михайлович увлекся проблемой распространения радиоволн вдоль земной поверхности и использования их для измерения расстояний с большой точностью. К этому времени академики Мандельштам и Папалекси уже достигли важных результатов в этом направлении. На основе их теоретических разработок был создан первый образец фазового радиоприемника, дававшего по тем временам необыкновенную точность. Доводить до кондиции этот прибор поручили Прохорову. По этому поводу институтские острословы сочинили стихи:

Вот Прохоров-крошка
Другим в пример
Катает в колясочке дальномер.
И кричит: "Господа и дамочки,
Смотрите на наши гаммочки!"

Летом 1941 года эти исследования продолжались в экспедиции под Москвой в Павловской Слободе. Итогом совместной с В.В. Мигулиным работой стал новый оригинальный способ наблюдения ионосферы с помощью радиоинтерференционного метода.

Предвоенной зимой в свободное от учебы и работы время друзья-аспиранты по воскресеньям выезжали за город на лыжах. К их компании иногда присоединялся Виталий Лазаревич Гинзбург, их ровесник, впоследствии ставший академиком. В одно из ноябрьских воскресений он пригласил на лыжную прогулку свою знакомую, а та пригласила свою подругу - будущую супругу Александра Михайловича - Галину Алексеевну, выпускницу географического факультета МГУ. Их встреча состоялась на Ленинградском вокзале...

Начало войны 22 июня 1941 года отодвинуло все планы. Прохоров вместе с другими аспирантами пошел записываться в народное ополчение. Еще в Ленинграде он прошел высшую вневойсковую подготовку в зенитной артиллерии и имел звание младшего лейтенанта запаса. Однако ему приказали ждать повестки из военкомата. Военкомат же вместо зенитной артиллерии направил его на курсы разведчиков.

Приближалась осень. Вражеские войска рвались к Москве. Курсы перевели сначала во Владимир, потом в Казань. Первый выпуск, в числе которого был и Александр Прохоров, в конце октября 1941 года отправили на фронт. В начале зимы Прохоров был под Тулой, в штабе армии, где около месяца обрабатывал сведения, получаемые от лиц, вышедших из окружения. Потом его перевели в 26-ю курсантскую отдельную стрелковую бригаду на должность помощника начальника штаба по разведке. В декабре 1941 года бригада была переброшена на Северо-Западный фронт. Здесь он участвовал в уничтожении окруженной Демянской группировки вражеских войск. А в марте 1942 года, во время бомбежки, был тяжело ранен.

После лечения, несмотря на покалеченную руку, А.М. Прохоров был направлен в распоряжение штаба Западного фронта, а оттуда - временно в Западный штаб партизанского движения. Осенью он был переведен в 94-й гвардейский стрелковый полк 30-й стрелковой дивизии Северо-Западного фронта на должность помощника начальника штаба полка по разведке.

На участке фронта, куда прибыл Прохоров, наступления гитлеровцев не предполагалось. Однако противник все время предпринимал огневые налеты на позиции советских войск. Обстрел был постоянным. Александр Прохоров не раз отправлялся в составе разведывательной группы в ночные рейды по тылам гитлеровцев. В одной из таких разведок боем 18 февраля 1943 года его группу накрыл сильный минометный огонь. А.М. Прохоров был ранен осколком, на этот раз в левое бедро. Ему "повезло", как говорили врачи, - нерв и кость остались целыми, ногу удалось сохранить. Ранение оказалось тяжелым. Последовали госпитали - Волоколамский, потом Московский, и операции - одна за другой...

В 1944 году, когда уже ощутимо веяло победой и все чаще вспыхивали салюты в честь освобожденния городов, медицинская комиссия признала Прохорова негодным к строевой службе, и в феврале он был демобилизован. Мужество, проявленное лейтенантом Прохоровым на фронте, было отмечено самой почетной солдатской медалью - "За отвагу".

В феврале 1944 года сразу же после демобилизации с приподнятым настроением Александр Михайлович помчался в Физический институт имени Лебедева, откуда аспирантом ушел на фронт. Там его встретили чуть ли не как пришельца с того света. Никто еще не вернулся в ФИАН с фронта. Пришло только несколько сообщений о гибели фиановцев, а остальные фронтовики вернулись позже.

Лабораторией колебаний по-прежнему руководил Н.Д. Папалекси.

В.В. Мигулин там уже не работал. Руководителем Прохорова стал доктор наук (впоследствии ставший членом-корреспондентом Академии наук) Сергей Михайлович Рытов. В лаборатории Александр Михайлович Прохоров почувствовал себя как рыба в воде, активно включившись в важные по тому времени исследования.

Одним из наиболее плодотворных научных направлений в то время было исследование нелинейных колебаний. Начались теоретические расчеты по теме "Стабилизация частоты лампового генератора в теории малого параметра". Обращение к задаче о стабилизации частоты не было случайным, так как диктовалось совершенно определенным "социальным заказом" того времени: радиолокация, радиосвязь и телевидение требовали все более и более стабильных по частоте генераторов. Достигнутый ранее очень высокий научный уровень работ по колебаниям позволил быстро добиться выдающихся результатов и в другой области, а именно, в изучении движения частиц в синхротроне. Были теоретически изучены процессы взаимодействия радиальных и фазовых колебаний в синхротроне, а затем поставлена и успешно выполнена задача по наблюдению и исследованию когерентного синхротронного излучения.

В области этих новых направлений активно работал А.М. Прохоров. Ежедневно в девятом часу утра он уходил из дома и возвращался всегда улыбающийся, радостный, в восемь часов вечера. Работал с подъемом и плодотворно. Эти работы легли в основу его кандидатской диссертации, которую он успешно защитил в 1946 году. Попутно он сдал последний аспирантский экзамен по спецпредмету, язык и философия были сданы до фронта.

С 1948 года Александр Михайлович впервые в нашей стране занялся исследованиями в совершенно новом направлении - радиоспектроскопии. Основными целями этой работы были, во-первых, точное определение структуры молекул и, во-вторых, использование исключительно стабильных и узких линий поглощения различных веществ для целей стабилизации частоты в радиодиапазоне.

Исследования в области радиоспектроскопии шли параллельно с работами по физике ускорителей. Исследованием ускорителей Александр Михайлович начал заниматься сразу после защиты кандидатской диссертации. Его научный руководитель, тогда член-корреспондент, а затем академик Владимир Иосифович Векслер поручил Прохорову экспериментальную проверку идеи о возможности использования ускорителя типа синхротрона для генерации сантиметровых и миллиметровых волн. Иными словами, речь шла об изучении когерентного излучения в синхротроне.

Для этого Александру Михайловичу был передан бетатрон - первый бетатрон, построенный в Советском Союзе доктором наук (впоследствии ставшим академиком) Павлом Алексеевичем Черенковым.

Вначале этот ускоритель электронов был опробован в различных режимах. В дальнейшем А.М. Прохоров совместно с сотрудниками перевел бетатрон в режим синхротронного ускорения для изучения синхротронного излучения в области сантиметровых радиоволн. Затем им была проведена большая серия сложных и тонких экспериментов по изучению когерентных свойств магнито-тормозного излучения релятивистских электронов, движущихся в однородном магнитном поле в синхротроне - синхротронного излучения. Синхротронное излучение обусловлено ускорением частиц при искривлении их траектории в магнитном поле и зависит от неоднородности распределения электронов по круговой орбите.

В результате проведенных исследований Александр Михайлович доказал, что синхротронное излучение может быть использовано в качестве источника когерентного излучения в сантиметровом диапазоне длин волн, определил основные характеристики источника, уровень мощности и предложил метод определения размеров электронных сгустков.

По общему признанию, эта классическая работа открыла целое направление исследований, которое весьма плодотворно развивается и до настоящего времени. Сегодня потери на синхронное излучение и связанные с ним эффекты в движении частиц учитываются при конструировании циклических ускорителей электронов высоких энергий. Синхронное излучение циклических ускорителей с длинами волн от мягкого рентгеновского до ультрафиолетового используется в рентгеноструктурном анализе, для рентгеновской и УФ-литографии и в ряде других областей науки и техники.

В январе 1948 года работа небольшого коллектива лаборатории была отмечена президиумом Академии наук СССР присуждением премии имени Л.И. Мандельштама. Премию получили: доктор физико-математических наук Сергей Михайлович Рытов, кандидат физико-математических наук Александр Михайлович Прохоров, кандидат физико-математических наук Марк Ефремович Жаботинский за работы: "К теории стабилизации частоты ламповых генераторов", "Об одном расширении области применения метода малого параметра", "Об одном специальном случае систем с двумя степенями свободы", "Стабилизация частоты в теории малого параметра" и "О теории стабилизации частоты". Диплом премии был подписан президентом Академии наук СССР академиком Сергеем Ивановичем Вавиловым и секретарем Академии наук СССР академиком Бруевичем.

Уже в эти годы в полной мере проявился творческий почерк А.М. Прохорова как ученого и организатора - постоянный поиск, безошибочное определение наиболее актуальных областей исследований, широкое использование самых последних достижений экспериментальных методик и теоретической мысли, в том числе и в смежных областях, и в результате - быстрое продвижение в решении самых ключевых вопросов фундаментальных исследований. Заняв передовые позиции в радиоспектроскопии, лаборатория обеспечила себе фронт работ по получению актуальной информации, столь необходимой физикам, химикам и в ряде других областей. Но здесь снова ярко проявился характер Александра Михайловича как ученого.

Не ограничиваясь получением чисто научных результатов, он ищет области практических приложений новых фундаментальных знаний. Наряду с внедрением радиоспектроскопии как метода спектрального анализа вещества в различные области науки он обращается к задаче использования узких резонансных линий спектров поглощения молекул для стабилизации частоты источников излучения СВЧ-диапазона, т.е. к задаче создания на новой основе высокоточных стандартов частоты и времени.

Именно при решении этой трудной прикладной задачи впоследствии и будут сформулированы главные принципы и заложены физические основы квантовой электроники.

12 ноября 1951 года Александр Михайлович Прохоров защитил докторскую диссертацию. Тема диссертации была связана с изучением когерентного излучения синхротрона в области сантиметровых радиоволн. Наиболее существенное в ней - метод определения размеров в сгустках электронов. Но еще до ее защиты Прохоров начал работать ассистентом на физико-техническом факультете (физтех на Долгопрудной). Из-за подвижности, живости, простоты Александра Михайловича часто принимали за студента. Физтеховцы же его любили и тянулись к нему. Многие из них защитили дипломы в лаборатории колебаний у Прохорова и, будучи способными ребятами, увлеченными наукой, там же оставались работать. Так что лаборатория росла, размах работ увеличивался, энтузиазм - тоже. Дипломниками Александра Михайловича начиная с 1951 года были: Н.Г. Басов, А.И. Барчуков, В.Г. Веселаго, Б.Д. Осипов, П.П. Пашинин, В.К. Конюхов, В.Б. Федоров, В.М. Марченко. Физтеховцы проникали и в другие секторы лаборатории, но некоторые из них впоследствии переходили к Александру Михайловичу. Это Ф.В. Бункин и Н.В. Карлов. Несколько позже у Прохорова появились новые дипломники, окончившие разные учебные заведения: Т.М. Мурина, Г.П. Шипуло. Пришли молодые специалисты: А.А. Маненков, Л.А. Кулевский, химик Г.Я. Взенкова, позже - Зуева. Все они с прибывшими еще позже успешно работают в лаборатории по сей день, став известными учеными.

К этому времени лаборатория имела широкую тематику исследования. Основной темой была радиоастрономия, у истоков которой стояли Н.Д. Папалекси и С.И. Хайкин, а в дальнейшем - В.В. Виткевич. Изучение распространения радиоволн и статистическую радиофизику возглавлял С.М. Рытов.

После защиты докторской Александр Михайлович Прохоров полностью переключился на радиоспектроскопию. Кроме упомянутых лиц, работу в лаборатории возглавляли такие крупные ученые, как А.Б. Меликян, Б.М. Чихачев, А.Е. Соломонович, А.Д. Кузьмин, Р.Л. Сороченко. Бессменным помощником в создании экспериментальных установок большой сложности еще с довоенного до настоящего времени является прецизионный механик Д.К. Бардин. В послевоенное время к нему присоединился умелец, мастер на все руки, вернувшийся с фронта инвалидом, техник В.Н. Колосов. Он проработал у Александра Михайловича до конца 1960-х годов и ушел, так как потеря глаза на фронте мешала ему работать.

В 1954 году руководитель лаборатории академик М.А. Леонтович перешел в Институт атомной энергии, возглавляемый в то время академиком И.В. Курчатовым. Заведующим лабораторией колебаний имени Л. И. Мандельштама и Н. Д. Папалекси ФИАН СССР стал А.М. Прохоров. Своим энтузиазмом он увлекал не только свой в основном молодой коллектив, но и физиков, работающих в других местах. Тот, кто стремился к серьезной, интересной работе, пытался попасть в лабораторию Прохорова.

В это время одновременно с работами в области физики синхротронного излучения А.М. Прохоров по предложению академика Д. В. Скобельцына проводит цикл исследований по радиоспектроскопии молекул, дополненных затем исследованиями по радиоспектроскопии кристаллов с использованием метода электронного парамагнитного резонанса. Уже в те далекие годы закладываются основы новой научной школы и формируется научный стиль А.М. Прохорова, в основе которого лежит глубокое понимание физики, умение выделить главное и наиболее интересное, способность быстро и эффективно концентрировать усилия на самых перспективных научных направлениях.

В научном творчестве Александра Михайловича Прохорова десятилетие 1955-1965 годов стало одним из самых плодотворных. Полученные им в это время классические результаты легли в основу лазерной физики.

Сейчас еще рано расставлять приоритеты в огромном числе научных достижений А.М. Прохорова. Однако, наверное, мы не погрешим против истины, утверждая, что главным научным подвигом Александра Михайловича (во всяком случае, до настоящего времени) является создание лазера - одного из двух-трех крупнейших научных открытий XX века. История создания лазера полна увлекательных поворотов и драматических событий, и А.М. Прохоров относится к числу главных персонажей и творцов этой истории.

Еще в 1905 году А.Эйнштейн высказал гипотезу, согласно которой энергия света состоит из дискретных порций энергии - квантов, которые испускаются (или поглощаются) атомами и атомными системами при их переходах из одного дискретного энергетического состояния в другое. Спустя несколько лет, в 1916 году, А.Эйнштейном же было введено понятие индуцированного излучения. Было постулировано, что переходы из более высокого энергетического состояния в более низкое могут происходить не только спонтанно, т.е. самопроизвольно, но и вынужденно под воздействием пришедшего извне другого кванта, имеющего энергию в точности равную энергии перехода. В результате с места события уходят уже два кванта излучения - вынуждающий и вынужденный. Важно, что оба они распространяются в направлении, в котором распространялось индуцирующее излучение, и при этом имеют одинаковую энергию, или длину волны излучения. Позже Ш.Бозе и А.Эйнштейном (1924), а затем П.А.М. Дираком (1927) были разработаны теоретические представления о процессах излучения и поглощения света.

В результате были строго обоснованы существование индуцированного излучения и полная тождественность (неразличимость) квантов этого излучения, включая фазу электромагнитных волн (так называемая, когерентность излучения).

Представление об индуцированном излучении является одним из краеугольных камней квантовой электроники и физики лазеров.

Понадобилось около трех десятков лет с момента завершения построения теории излучения и поглощения света до создания первого лазера. Однако ничего удивительного в этом нет. Предстояло сделать еще несколько поистине гигантских шагов, чтобы завершить строительство фундамента лазерной физики. Дело в том, что А. Эйнштейн и П.А.М. Дирак, развивая представления об индуцированном излучении, имели в виду прежде всего оптику, где в то время уже господствовали квантовые представления. Однако в арсенале оптики отсутствовали идеи и методы, дополнившие впоследствии представления об индуцированном излучении и приведшие к созданию лазера. Сейчас уже очевидно, что в оптическом сообществе лазер появиться принципиально не мог. Вершиной развития представлений об индуцированном излучении в среде оптиков стали работы профессора В.А. Фабриканта об оптических средах с отрицательным поглощением (с усилением в квантово-электронной терминологии). Понятия о генерировании монохроматического, когерентного и узко-направленного излучения, что, собственно, и характеризует лазер, в оптике не возникало и не могло в то время возникнуть. Эти идеи и понятия пришли из радиофизики и радиоспектроскопии вместе с понятиями о монохроматическом излучении, инверсной населенности, резонаторах, усилении и генерации радиоизлучений в середине 50-х годов XX века. В среде радиофизиков, оперирующих, в отличие от оптиков, в основном волновыми представлениями, эти понятия уже давно и прочно укоренились и широко использовались в работе. Именно в этих областях успешно работали А.М. Прохоров и его молодые сотрудники. Имея богатый опыт и знания в области радиофизики и прекрасно владея аппаратом теории колебаний, с одной стороны, и глубоко проникнув в область радиоспектроскопии - с другой, Александр Михайлович впервые синтезировал основные идеи и методы радиофизики с квантовыми представлениями оптики.

В 1954 году А.М. Прохоровым (совместно с Н.Г. Басовым) были предложены методы формирования молекулярных пучков с последующей сортировкой возбужденных и невозбужденных молекул и пропусканием пучка возбужденных молекул через объемный резонатор. Здесь впервые удалось соединить в одно целое представления об индуцированном излучении и инверсной населенности с представлениями о резонаторах, обратной связи и генерации когерентного электромагнитного излучения. Всего этого было уже достаточно для создания квантового генератора, работающего на энергетических переходах в радиодиапазоне в молекулярных пучках (т.е. мазера). Первым таким генератором стал аммиачный мазер, излучающий в радиодиапазоне. В тот же период времени была создана исчерпывающая теория молекулярного генератора и усилителя радиоизлучения (1955, А.М. Прохоров совместно с Н.Г. Басовым).

Совершенно естественно, что после триумфального завершения работ по мазерам возник вопрос о движении в сторону видимого участка спектра электромагнитных колебаний, т.е. о создании лазеров оптического диапазона.

Описывая историю создания лазера, часто отмечают, что основной трудностью продвижения из радио- в оптический диапазон является резкое возрастание вероятности спонтанных переходов, в связи с чем появляются трудности в достижении инверсной населенности. Сам А.М.Прохоров в своей Нобелевской лекции в 1964 году заметил, что основными препятствиями на пути создания лазера оптического диапазона в то время были: отсутствие резонаторов, способных работать в оптическом диапазоне длин волн, и отсутствие конкретных методов достижения инверсной населенности в оптическом диапазоне. Уже вскоре после появления радиоволнового мазера оба эти препятствия были блестящим образом устранены.

В 1955 году А.М. Прохоровым (совместно с Н.Г. Басовым) была опубликована идея создания инверсной населенности не путем селекции возбужденных и невозбужденных молекул в молекулярных пучках, а за счет воздействия на молекулы внешнего электромагнитного излучения резонансной частоты. Этот метод, получивший впоследствии название метода трех уровней, позволяет достигать инверсной населенности в любых многоуровневых системах, независимо от величины энергии кванта. Метод трех уровней лежит сейчас в основе работы всех лазеров с так называемой оптической накачкой. Столь же успешно было преодолено и второе из препятствий - отсутствие подходящих резонаторов для оптического диапазона. Проблема состояла в том, что объемные резонаторы, широко использовавшиеся в радиофизике, не могли быть применены в оптике по той причине, что размеры объемного резонатора должны быть соизмеримы с длиной волны генерируемого им излучения. Как известно, длины волн оптического диапазона составляют величины порядка 1 микрометра, что делает применение объемных резонаторов абсолютно бессмысленным. В 1958 году А.М.Прохоров впервые предложил использовать в качестве резонатора пару плоских параллельных пластин-зеркал, так называемый открытый резонатор. Такая пара зеркал использовалась ранее в оптике в качестве весьма распространенного инструмента, так называемого интерферометра Фабри-Перо, но совершенно для других целей. Создание открытого резонатора снимало последнее ограничение для продвижения в оптическую область спектра и, по существу, завершало собой построение фундамента лазерной физики. Тем не менее лазеры оптического диапазона появились лишь несколько лет спустя, причем первый лазер на кристаллах рубина был создан в США (1960).

Предложение использовать открытые резонаторы для оптических генераторов (лазеров) было связано с тем, что существующие в радиодиапазоне резонаторы имеют размеры, сравнимые с длиной волны. Это не подходит для лазеров, так как длина волны света на несколько порядков меньше, чем длина радиоволны. Открытый резонатор решил эту проблему, так как размеры этого резонатора значительно больше, чем длина волны, излучаемой лазером. Поэтому открытый резонатор используется во всех лазерных системах.

Ныне остается удивляться тому, что лазеры были созданы в такие короткие сроки. Действительно, для создания генератора радиодиапазона - мазера - необходимы были блестящие знания в области радиофизики, теории колебаний, радиоспектроскопии и оптики, помноженные на столь же блестящие талант и научную интуицию, а для его технического воплощения - труд талантливых механиков, т.е. все работы могли быть выполнены в пределах одного научного коллектива. Для прорыва же в область оптического диапазона, кроме всего перечисленного выше, необходимо было еще одно: требовался переход на совершенно новые технологии, которые не существовали тогда ни в СССР, ни в других странах, включая и США.

Необходимо было организовать поиск новых материалов, причем во всех мыслимых агрегатных состояниях: твердом (кристаллы и стекла), жидком, газообразном и в состоянии плазмы, обладающих необходимыми для генерации схемами энергетических уровней; необходимо было разработать методы получения этих материалов. При этом предъявлялись очень высокие требования к химической чистоте и структурной однородности материалов, значительно более высокие, чем существовали раньше. Кроме того, необходимо было разработать и внедрить в практику методы прецизионной механической обработки новых материалов, например, разработать методы полировки оптических поверхностей с небывало высоким классом точности, строгой параллельностью и высокой плоскостностью. Нужно было создать новые источники излучения для оптической накачки, новые методы напыления прецизионных зеркал. За этими звеньями технологии тянулись другие: создание нового технологического оборудования, особо чистых реактивов, методик и приборов для контроля качества и физических параметров материалов и много других совершенно необходимых "мелочей", из которых складываются так называемые высокие технологии. По-существу, необходимо было создать разветвленную исследовательскую и промышленную инфраструктуру, без которой создание лазеров и их продвижение в практику были бы невозможны. Мало что из перечисленного существовало в готовом виде к моменту начала развертывания работ по созданию лазеров. Именно А.М. Прохоров первым осознал необходимость и масштабы предстоящей работы и включился в нее со всем жаром своего темперамента, талантом ученого и организатора и глубокими и разносторонними знаниями. В рекордно короткие сроки, в пределах одного десятилетия, в СССР была создана сеть новых институтов, конструкторских бюро и производств, подготовлены кадры специалистов-лазерщиков и специалистов смежных направлений. В результате за короткий срок СССР превратился, наряду с США, в одну из двух лазерных сверхдержав. Роль А.М. Прохорова в этом процессе трудно переоценить. Она вполне сопоставима с ролью И.В. Курчатова в развитии атомной физики и энергетики и С.П. Королева в развитии космической техники и космонавтики.

Под руководством А. М. Прохорова выполнен широкий круг работ, из которых в дальнейшем складываются целые научные направления как лазерной физики, так и других областей современной науки. Среди них - мощные твердотельные лазеры на кристаллах и стеклах, мощные лазеры на углекислом газе непрерывного действия, в том числе газодинамические, взаимодействие оптического излучения с веществом, в том числе распространение мощных световых пучков в нелинейных средах. Потом в круг его интересов вошли рентгеновские лазеры, лазеры с прямой ядерной накачкой, физика поверхности, микроэлектроника, высокотемпературная сверхпроводимость.

Создание лазеров стало подлинной революцией в оптике, поскольку до этого не существовали генераторы в оптическом диапазоне волн. С тех пор история лазеров обогатилась многими замечательными свершениями. Созданы новые типы лазеров, обоснованы и разработаны многие направления их практического использования в медицине, технологии материалов, обработке и передаче информации, приборостроении, экологии и во многих других областях.

Сегодня лазеры составляют основу фотоники - современной области технологии генерации и преобразования света и других электромагнитных излучений. Развитие этой области приобрело в последние годы взрывной характер и составляет предмет соревнования наиболее развитых стран мира. В поистине триумфальном шествии лазеров в современном мире ярко отражается личность выдающегося ученого-энциклопедиста Александра Михайловича Прохорова.

Неоценим вклад Александра Михайловича в развитие таких областей физики, как нелинейная оптика, волоконная и интегральная оптика, физика магнитных явлений, субмиллиметровая спектроскопия. Большое внимание Александр Михайлович уделяет и многочисленным применениям лазеров, особенно волоконно-оптической связи, лазерным технологиям и использованию лазеров в медицине и экологии.

Важнейшие, выдающиеся результаты, которыми так богат творческий путь Александра Михайловича Прохорова, признаны мировой научной общественностью. В 1964 году основоположники квантовой физики советские ученые А.М. Прохоров, Н.Г. Басов и американский ученый Ч. Таунс отмечены самой престижной международной премией - Нобелевской премией по физике. По воспоминаниям супруги Александра Михайловича Галины Алексеевны, когда ученому позвонили из шведского посольства с сообщением и поздравлением по случаю присуждения ему и его коллегам Н.Г. Басову и Ч. Таунсу Нобелевской премии, он в первую минуту этому не мог поверить. Когда же до него дошла реальность происходящего, нахлынула большая радость.

А вот как описывает Галина Алексеевна Прохорова саму процедуру вручения премии:

В Концертный зал надо было прибыть точно в 16.20, и хотя расстояние от нашего отеля до него не больше трех километров, выезжать пришлось почти за час. Улицы были так запружены машинами, идущими к Концертному залу, что мы передвигались почти со скоростью пешехода. Не доезжая квартала до цели, многие от нетерпения выходили из машин, и тротуары были уже заполнены спешащими дамами, изящно поддерживающими ручками в белых перчатках непривычно длинные платья, и мужчинами во фраках, белых перчатках, а иногда и в цилиндрах. Каждый лауреат с женой и атташе едет в отдельной машине. В пути мы оказываемся то рядом с Басовыми, то - с Таунсами и с улыбкой помахиваем друг другу.

Войдя в зрительный зал уже без лауреатов (их провели в отдельное помещение) и взглянув прежде всего на сцену, украшенную венками и букетами, мы были ослеплены блеском орденов, медалей и звезд на фраках плотно и строго сидящих видных ученых и членов Нобелевского комитета. Партер и балконы пестрели нарядными платьями, драгоценностями, мехами и улыбками праздничных лиц. Первые два ряда в центре партера были пусты: они предназначены для королевской семьи и их приближенных. На спинке каждого кресла - имя того, кто должен сидеть в нем. Волей случая у нас, двух русских женщин, оказались самые лучшие места для гостей. У дверей и по углам зала - студенты во фраках, форменных белых фуражках с черными околышками и с национальной голубой лентой через плечо. Вот они одновременно вскинули фанфары, и в дверях появилась королева Луиза, король Густав VI Адольф, принцесса Сибилла и принцесса Христина (мать и дочь). Королева и принцессы - в светлых длинных открытых платьях с широкой голубой лентой через плечо и маленькой короной на голове.

Началась церемония. На сцене студенты вновь вскинули фанфары. Королевская семья и все присутствующее встали. Медленно появляются Нобелевские лауреаты. Входят они парами: лауреат в сопровождении члена Нобелевского комитета. Их встречают аплодисментами. Раздаются гимны. После поклона лауреаты садятся, садятся и все присутствующие. Официальную часть открывает президент Нобелевского фонда профессор Тиселиус (лауреат Нобелевской премии по химии 1948 года). Его речь была посвящена целям и задачам Нобелевских премий. Далее представляют каждого Нобелевского лауреата. Начинают с физиков, со старшего по возрасту: профессор Чарльз X. Таунс (США), профессор Александр Михайлович Прохоров (СССР), профессор Николай Геннадиевич Басов (СССР). Каждый на них встает и раскланивается. Представляет их профессор Шведской академии наук Бенгт Эдлен. Он торжественно начинает: "Премия присуждена за основополагающие работы в области квантовой электроники, которые привели к созданию генераторов и усилителей, основанных на принципе лазеров-мазеров..." И подробное изложение истории и содержания работ. Речь заканчивается словами: "Открытие лазера дало в руки исследователей новый замечательный инструмент, эксплуатационные возможности которого находятся пока еще в зачаточной стадии развития. Потенциальные возможности лазеров широко известны и признаны как в области техники, так и не в меньшей мере в области связи. Когда речь идет о специальном использовании этого огромного сгустка энергии, то необходимо очень ясно представить себе, что такая энергия, очень ограниченная во времени и в пространстве, имеет особое значение при работах на микрошкале, как, например, при микрохирургических операциях. Необходимо при этом специально отметить, что излучение лазера не может причинить никакого вреда, если соблюдать известную осторожность. Миф о "смертоносном луче" можно поэтому окончательно и бесповоротно опровергнуть...

Но вот к королю подкатывают столик с наградами. Три физика в том же порядке, в каком они были представлены, по очереди спускаются со сцены по специальной парадной лестнице и подходят к королю. Король каждому вручает диплом лауреата и крупную Золотую медаль. Награжденные раскланиваются и поднимаются на свое место. При церемонии вручения наград все присутствующие стоят. Стоит даже королева, несмотря на свой преклонный возраст и тяжелую болезнь. Мы стоим так близко, что слышим пожелания короля каждому награжденному. Все доклады и разговоры ведутся на английском языке.

Торжественная церемония сопровождается симфоническим оркестром. Между представлением лауреатов, их награждением оркестр очень тихо исполняет произведения Моцарта, Бетховена, Баха.

А в это время в столице Норвегии городе Осло получает Нобелевскую премию Мира негритянский общественный деятель Мартин Лютер Кинг.

Торжественная часть окончена. Лауреаты с семьями выходят на улицу, заполненную людьми, которые только что смотрели всю церемонию по телевизору. Кстати, телевизионная передача велась по всем городам Западной Европы, кроме Советского Союза...

А до этого события, еще в 1959 году, А.М. Прохоров и Н.Г. Басов были удостоены высшей научной награды СССР - Ленинской премии. В последующие годы А.М. Прохорову присуждаются звания лауреата Государственной премии СССР и премии Совета Министров СССР, а также высшая награда Академии наук - Золотая медаль имени М.В. Ломоносова. В 1966 году А.М. Прохоров избран действительным членом Академии наук СССР.

Во всем мире известна научная школа, связанная с его именем. Эта школа, начавшая складываться еще в "долазерный" период из числа студентов и молодых сотрудников лаборатории колебаний ФИАНа, продолжала формироваться вокруг Александра Михайловича и в последующие годы. К началу 1980-х годов она уже представляла собой большой, органически сложившийся коллектив специалистов высшей квалификации, ученых, широко известных не только в России, но и за рубежом, членов Академии наук, профессоров, докторов и кандидатов наук - в подавляющем большинстве учеников Александра Михайловича.

Институт общей физики Академии наук СССР (ныне РАН), созданный в 1983 году, - детище Александра Михайловича Прохорова - был назван так не случайно и в полной мере оправдывает свое название широтой направлений научных исследований. Высокая научная репутация ИОФАНа признана во всем мире. Исследования, выполненные под общим научным руководством Александра Михайловича сначала в лаборатории колебаний ФИАНа, а затем и в ИОФАНе, отмечены 4 Ленинскими и 13 Государственными премиями СССР.

1990-е годы были временем драматических событий в стране, оказавших глубокое воздействие на многие сферы деятельности общества, в частности, на науку. Это не могло не сказаться и на Институте общей физики РАН, и на судьбах его сотрудников.

Необходимость научного выживания в новых условиях привела к реорганизации Института общей физики. В институте был образован ряд научных центров со статусом юридического лица: Центр естественно-научных исследований (ЦЕНИ, директор - академик А.М. Прохоров), Научный центр волоконной оптики при ИОФ РАН (НЦВО при ИОФ РАН, директор - академик Е.М. Дианов), Научный центр лазерных материалов и технологий (НЦЛМиТ, директор - академик В.В. Осико), Научный центр волновых исследований (НЦВИ, директор - академик Ф.В. Бункин).

В 1998 году Александр Михайлович покинул пост директора созданного им института, но оставался почетным директором ИОФ РАН и директором ЦЕНИ. Новым директором избран академик РАН Иван Александрович Щербаков. Отдел колебаний ИОФ РАН возглавляет член-корреспондент РАН Гарнов Сергей Владимирович.

Несмотря на большие трудности с финансированием, Институт общей физики, завоевавший за короткий срок своего существования высокий авторитет в России и за рубежом, продолжает успешно работать. И центром научной жизни, как и всегда, оставался Александр Михайлович Прохоров. Его волновали крупные проблемы, такие как экология, лазерная медицина, нанотехнология, новые материалы, волоконно-оптическая связь. И как всегда при обсуждении научных проблем, у Александра Михайловича загорались глаза и рождались новые идеи и подходы к решению этих проблем.

Тех, кто работал с Александром Михайловичем, всегда поражала его способность переключаться с одной научной области на другие, казалось бы совершенно не связанные друг с другом. И лишь много позже, когда происходил синтез идей и результатов различных научных направлений и появлялись совершенно новые направления, не существовавшие ранее, становилась ясна логика в развитии его научных пристрастий.

Распространение радиоволн, генераторы радиочастот, теория колебаний, электромагнитные излучения ускорителей заряженных частиц, радиоспектро- скопия, молекулярные стандарты частоты, молекулярные квантовые генераторы и усилители (мазеры), квантовые парамагнитные усилители, физика и химия твердого тела, рост и технология кристаллов, технология стекол, космическая связь и радиоастрономия, лазеры и их применение, физика плазмы, получение и методы обработки сверхпрочных материалов, технология, физика и химия полупроводников, микро- и наноэлектроника, искусственный алмаз и ювелирные камни. Этот список научных интересов А.М. Прохорова можно было бы продолжить и далее. Именно поэтому в рабочем кабинете А.М.Прохорова можно было встретить физика и химика, медика и космонавта, астронома и конструктора новой техники. Все они находили в лице хозяина кабинета заинтересованного собеседника и получали от него вполне конкретные и профессиональные советы и рекомендации.

Его лидерство ярко проявлялось и в научном руководстве, и в организации исследований. Его высокий научный и нравственный авторитет в течение многих лет был центром притяжения как научной молодежи, так и уже сложившихся ученых. Он в высоком смысле слова - Учитель.

Помимо работы в институте, Александр Михайлович являлся Главным редактором Большой Российской энциклопедии и советником президиума РАН. Он - член многих зарубежных академий и научных обществ. В последние годы - президент Академии инженерных наук РФ.

В 1998 году Александру Михайловичу присуждена Государственная премия России за работы по созданию инфракрасных волоконных световодов (в составе авторского коллектива). В 2000 году за выдающиеся работы в области оптики он отмечен медалью Фредерика Айвеса (Frederic Ives Medal) - высшей награды Американского оптического общества.

А.М. Прохоров - дважды Герой Социалистического Труда, кавалер пяти орденов Ленина, ордена Отечественной войны I степени, ордена "За заслуги перед Отечеством" II степени, многих других наград.

В последнее время в связи с бедственным положением науки в России, Александр Михайлович опубликовал ряд статей (газета "Известия", Вестник РАН, препринт ИОФ РАН), посвященных роли фундаментальных исследований и науки вообще в развитии современного общества. Эти статьи и другие выступления Александра Михайловича глубоки по содержанию и оптимистичны по духу.

Время, кажется, не имело власти над А.М. Прохоровым. Как обычно каждое утро он приезжал в институт и работал до позднего вечера. В приемной его кабинета всегда было людно. Здесь можно было встретить академиков и представителей промышленности, иностранцев и журналистов, сотрудников многих научных учреждений. Александр Михайлович встречался с сотрудниками, проводил ученые советы, семинары, строил планы и обсуждал работы, шутил и сердился, но никогда не бывал равнодушным. Он работал, работал в полную силу, потому что весь его громадный жизненный заряд принадлежал науке.

Память о выдающемся академике высоко отмечена: 1 марта 2012 года авиакомпания «Аэрофлот» назвала в честь А.М. Прохорова самолет Airbus A321. Его имя носят Институт общей физики и Инженерная академия. Учреждена золотая медаль имени А.М. Прохорова. Академику Прохорову в 2015 году был установлен памятник на Университетском проспекте в Москве. В октябре 2016 года его именем названа площадь в Гагаринском районе Москвы.

Александр Михайлович Прохоров - это видная фигура советской и российской физики. Он занимался одной из самых сложных и полезных разработок в области квантовой элетродинамики. Благодаря своим трудам, совместно со своими последователями, получил Нобелевскую премию в 1964 году. Также занимался преподаванием и изучением других областей науки. Интересовался развитием космоса.

Семья Александра Михайловича Прохорова

Гениальный ученый родился 11 июля 1916 года в семье революционеров - Михаила Ивановича и Марии Ивановны. Его родители бежали от репрессии российской царской семьи и были вынуждены эмигрировать в Австралию из Украины. Отец Александра Михайловича Прохорова был членом рабочей партии с 1902 года и занимался активной политической деятельностью. Мать ученого не имела образования, но от природы обладала острым умом и сообразительностью. Всецело поддерживала своего мужа, из-за чего также подвергалась репрессиям.

Из-за постоянных преследований молодая семья вынуждена была бежать во Владивосток, после чего они отправились в Австралию. Там, на северо-западе Квинслека, среди русских колонистов, и продолжила свою жизнь молодая пара революционеров.

Ранние годы

Биография Александра Прохорова начинается в маленьком доме на окраине Австралии. Из воспоминаний ученого известно, что он находился на попечительстве своих сестер - Клавдии, Валентины и Евгении. У него не было сверстников, с которыми он мог бы общаться, а потому его досуг скрашивала семья. В краткой биографии Александра Михайловича Прохорова отмечается, что он рос тихим и спокойным ребенком. Самым ярким воспоминанием из детства стала история, которая произошла с ним 5 лет. Ребенок отправился встретить родителей, но заблудился в лесу. Его нашли ранним утром - уставшего, замученного и обессиленного. В 1923 году, после получения известий с родины, семья отправляется в Советский Союз. Переезд дался не просто, перенести акклиматизацию смогли не все. Клавдия и Валентина погибли от болезни, что оставило печальный след на сердце юного Александра Михайловича.

После переезда в Ташкент Прохоров начинает усердно учиться в своей первой русской школе. Он исправно получает образование до 5-го класса, после чего влюбляется в физику.

Переезд в Ленинград

После успешного окончания школы Александр с семьей переезжает. Ленинград встречает молодого и подающего надежды ученого с распростертыми объятиями. Его способностей оказалось достаточно для того, чтобы без труда поступить в Ленинградский электротехнический университет имени Ленина - один из лучших вузов Советского Союза. Во время обучения главным интересом Александра Прохорова все так же оставалась физика. Но он занимался и углубленным изучением радиотехнологий.

В университете царила особая атмосфера научных исследований. Именно там Иоффе открыл принципиально новое отделение экспериментального факультета физики. После получения первого высшего образования Александр Прохоров подает документы на физический факультет. В процессе обучения ему удалось улучшить свои знания английского языка. Этот фактор в значительной степени помог ему в дальнейшем - во время работы в других странах.

Период активных исследований

После окончания университета ученый начал заниматься любимым делом - изучением воздействия радиоволн. Он разработал первый в мире фазовый приемник, который отличался от изобретений современников высокой точностью передачи сигналов. В 1941 году отправился в экспедицию в Подмосковье. Там он занимался изучением ионосферы с применением радиоинтерференционного метода, который он сам и разработал.

1941 год был одним из самых сложных в истории Советской России, что и отразилось в воспоминаниях ученого. Он и его последователи отправились в экспедицию на лыжах. На одно из своих исследований он пригласил будущую супругу - Галину Алексеевну, которая также интересовалась развитием науки. Она закончила географический факультет МГУ и была прекрасным собеседником для молодого изобретателя.

Александр Прохоров был серьезно ранен после бомбежек Москвы и был вынужден отойти от исследовательской деятельности. Ученый смог оправиться от ранения только спустя 2 года - в 1944. После этого он начал разрабатывать теорию стабилизации ламповой частоты.

Послевоенные годы

После окончания ВУЗа ученый защитил докторскую диссертацию по физике в 1946 году. К 1948 начал исследования в новой для всего мира области - радиоспектроскопии. Он открыл структуру молекул и определил ее роль в стабильных линиях электропередач, чем значительно упростил передачу сигналов на большее расстояние. Параллельно с этим занимался физическими ускорителями частиц. Проводил различные эксперименты с собственным прибором - бетатроном. Его исследования до сих пор продолжают многие ученые-физики во всем мире.

Получил кандидатскую степень за работу "О расширении области применения метода малого параметра". Его диплом был лично подписан главой Академии Наук СССР. Александру Михайловичу также была присвоена премия имени Мандельштама. Уже к 50-м в его работах прослеживался четкий и индивидуальный почерк ученого. Для него было важно не только открыть новую область знаний, но и найти практическое применение для нее в жизни. Александр Прохоров занимался популяризацией науки и преподавательской деятельностью до конца своих дней.

Доктор наук, лауреат Нобелевской премии

12 ноября 1951 года ученому стал доктором наук, защитив очередную диссертацию на тему излучения сантиметровых радиоволн. Он не только занимался наукой сам, но и вдохновлял других. Сверстники и сокурсники тянулись к нему и старались приблизиться к его результату. Научная лаборатория Александра Прохорова становилась все более известной и расширила спектр своих исследований.

В 60-е годы Александра Прохорова называли самым перспективным и трудолюбивым ученым современности. Он стал одним из основоположников квантовой теории, за что получил Нобелевскую премию в 1964 году.

Ученый также был удостоен множества наград на родине, в том числе Ленинской премии. Тем не менее в члены Академии наук он вошел только к 1966 году.

В середине восьмидесятых его исследовательский центр стал частью РАН и получил название "Институт Общей Физики". По сей день его признают по всему миру. ИОФ считается одной из самых продвинутых и уважаемых научных организаций.

Последние годы

Заниматься наукой Александр Прохоров не прекращал на протяжении всей жизни. Он горячо любил физику и в 1998 году получил свою последнюю премию за создание инфракрасных светодиодов.

Каждый день он приезжал на работу в институт и трудился до самого вечера. 8 января 2002 года он умер в собственном кабинете. Сложно себе представить более продуктивного и трудолюбивого ученого, чем Александр Прохоров. Его вклад в развитие квантовой физики невозможно переоценить, а потому его имя навсегда останется в истории.