Что такое квантовая физика простыми. Как разобраться в квантовой физике

Неподготовленного слушателя пугает с самого начала знакомства. Она странная и нелогичная, даже для физиков, которые имеют с ней дело каждый день. Но она не непонятная. Если вас интересует квантовая физика, на самом деле есть шесть ключевых понятий из нее, которые необходимо удерживать в уме. Нет, они мало связаны . И это не мысленные эксперименты. Просто намотайте их на ус, и квантовую физику будет намного проще понять.

Есть много мест, с которых можно начать это обсуждение, и вот это так же хорошо, как другие: все в нашей Вселенной обладает одновременно природой частиц и волн. Если бы можно было сказать о магии так: «Все это волны, и только волны», это было бы замечательным поэтическим описанием квантовой физики. На самом деле все в этой вселенной обладает волновой природой.

Конечно, также все во Вселенной имеет природу частиц. Звучит странно, но это .

Описывать реальные объекты как частицы и волны одновременно будет несколько неточным. Собственно говоря, объекты, описываемые квантовой физикой, не являются частицами и волнами, а скорее принадлежат третьей категории, которая наследует свойства волн (частоту и длину волны, вместе с распространением в пространстве) и некоторые свойства частиц (их можно пересчитать и локализовать с определенной степенью). Это приводит к оживленным дебатам в физическом сообществе на тему того, будет ли вообще корректно говорить о свете как о частице; не потому, что есть противоречие в том, обладает ли свет природой частиц, а потому, что называть фотоны «частицами», а не «возбуждениями квантового поля» - значит, вводить студентов в заблуждение. Впрочем, это касается и того, можно ли называть электроны частицами, но такие споры останутся в кругах сугубо академических.

Эта «третья» природа квантовых объектов отражается в запутанном иногда языке физиков, которые обсуждают квантовые явления. Бозон Хиггса был обнаружен на Большом адронном коллайдере в качестве частицы, но вы наверняка слышали словосочетание «поле Хиггса», такой делокализованной вещи, которая заполняет все пространство. Это происходит, поскольку при определенных условиях вроде экспериментов со столкновением частиц более уместно обсуждать возбуждения поля Хиггса, нежели определять характеристики частицы, тогда как при других условиях вроде общих обсуждений того, почему у определенных частиц есть масса, более уместно обсуждать физику в терминах взаимодействия с квантовым полем вселенских масштабов. Это просто разные языки, описывающие одни и те же математические объекты.

Квантовая физика дискретна

Все в названии физики - слово «квантум» происходит от латинского «сколько» и отражает тот факт, что квантовые модели всегда включают что-то приходящее в дискретных величинах. Энергия, содержащаяся в квантовом поле, приходит в кратных величинах некой фундаментальной энергии. Для света это ассоциируется с частотой и длиной волны света - высокочастотный свет с короткой волной обладает огромной характерной энергией, тогда как низкочастотный свет с длинной волной обладает небольшой характерной энергией.

В обоих случаях между тем полная энергия, заключенная в отдельном световом поле, целочисленно кратна этой энергии - 1, 2, 14, 137 раз - и не встретить странных долей вроде полутора, «пи» или квадратному корню из двух. Это свойство также наблюдается в дискретных энергетических уровнях атомов, и энергетические зоны конкретны - некоторые величины энергий допускаются, остальные нет. Атомные часы работают благодаря дискретности квантовой физики, используя частоту света, связанного с переходом между двумя разрешенными состояниями в цезии, которая позволяет сохранить время на уровне, необходимом для осуществления «второго скачка».

Сверхточная спектроскопия также может быть использована для поиска вещей вроде темной материи и остается частью мотивации для работы института низкоэнергетической фундаментальной физики.

Это не всегда очевидно - даже некоторые вещи, которые квантовые в принципе, вроде излучения черного тела связаны с непрерывными распределениями. Но при ближайшем рассмотрении и при подключении глубокого математического аппарата квантовая теория становится еще более странной.

Квантовая физика является вероятностной

Одним из самых удивительных и (исторически, по крайней мере) противоречивых аспектов квантовой физики является то, что невозможно с уверенностью предсказать исход одного эксперимента с квантовой системой. Когда физики предсказывают исход определенного эксперимента, их предсказание носит форму вероятности нахождения каждого из конкретных возможных результатов, а сравнения между теорией и экспериментом всегда включают выведение распределения вероятностей из многих повторных экспериментов.

Математическое описание квантовой системы, как правило, принимает форму «волновой функции», представленной в уравнениях греческой буковой пси: Ψ. Ведется много дискуссий о том, что конкретно представляет собой волновая функция, и они разделили физиков на два лагеря: тех, кто видит в волновой функции реальную физическую вещь (онтические теоретики), и тех, кто считает, что волновая функция является исключительно выражением нашего знания (или его отсутствия) вне зависимости от лежащего ниже состояния отдельного квантового объекта (эпистемические теоретики).

В каждом классе основополагающей модели вероятность нахождения результата определяется не волновой функцией напрямую, а квадратом волновой функции (грубо говоря, все ей же; волновая функция - это сложный математический объект (а значит, включает воображаемые числа вроде квадратного корня или его отрицательного варианта), и операция получения вероятности немного сложнее, но «квадрата волновой функции» достаточно, чтобы понять основную суть идеи). Это известно как правило Борна в честь немецкого физика Макса Борна, впервые его вычислившего (в сноске к работе 1926 года) и удивившего многих людей уродливым его воплощением. Ведутся активные работы в попытках вывести правило Борна из более фундаментального принципа; но пока ни одна из них не была успешной, хотя и породила много интересного для науки.

Этот аспект теории также приводит нас к частицам, пребывающим в множестве состояний одновременно. Все, что мы можем предсказать, это вероятность, и до измерения с получением конкретного результата измеряемая система находится в промежуточном состоянии - состоянии суперпозиции, которое включает все возможные вероятности. А вот действительно ли система пребывает в множественных состояниях или находится в одном неизвестном - зависит от того, предпочитаете вы онтическую или эпистемическую модель. Обе они приводят нас к следующему пункту.

Квантовая физика нелокальна

Последний не был широко признан как таковой, в основном потому, что он ошибался. В работе 1935 года, вместе с его молодыми коллегами Борисом Подольким и Натаном Розеном (работа ЭПР), Эйнштейн привел четкое математическое заявление чего-то, что беспокоило его уже некоторое время, того, что мы называем «запутанностью».

Работа ЭПР утверждала, что квантовая физика признала существование систем, в которых измерения, сделанные в широко удаленных местах, могут коррелировать так, чтобы исход одного определял другое. Они утверждали, что это означает, что результаты измерений должны быть определены заранее, каким-либо общим фактором, поскольку в ином случае потребовалась бы передача результата одного измерения к месту проведения другого со скоростью, превышающей скорость света. Следовательно, квантовая физика должна быть неполной, быть приближением более глубокой теории (теории «скрытой локальной переменной», в которой результаты отдельных измерений не зависят от чего-то, что находится дальше от места проведения измерений, чем может покрыть сигнал, путешествующий со скоростью света (локально), а скорее определяется неким фактором, общим для обеих систем в запутанной паре (скрытая переменная).

Все это считалось непонятной сноской больше 30 лет, так как, казалось, не было никакого способа проверить это, но в середине 60-х годов ирландский физик Джон Белл более детально проработал последствия работы ЭПР. Белл показал, что вы можете найти обстоятельства, при которых квантовая механика предскажет корреляции между удаленными измерениями, которые будут сильнее любой возможной теории вроде предложенных Э, П и Р. Экспериментально это проверил в 70-х годах Джон Клозер и Ален Аспект в начале 80-х - они показали, что эти запутанные системы не могут быть потенциально объяснены никакой теорией локальной скрытой переменной.

Наиболее распространенный подход к пониманию этого результата заключается в предположении, что квантовая механика нелокальна: что результаты измерений, выполненных в определенном месте, могут зависеть от свойств удаленного объекта так, что это нельзя объяснить с использованием сигналов, движущихся на скорости света. Это, впрочем, не позволяет передавать информацию со сверхсветовой скоростью, хотя было проведено множество попыток обойти это ограничение с помощью квантовой нелокальности.

Квантовая физика (почти всегда) связана с очень малым

У квантовой физики есть репутация странной, поскольку ее предсказания кардинально отличаются от нашего повседневного опыта. Это происходит, поскольку ее эффекты проявляются тем меньше, чем больше объект - вы едва ли увидите волновое поведение частиц и того, как уменьшается длина волны с увеличением момента. Длина волны макроскопического объекта вроде идущей собаки настолько смехотворно мала, что если вы увеличите каждый атом в комнате до размеров Солнечной системы, длина волны пса будет размером с один атом в такой солнечной системе.

Это означает, что квантовые явления по большей части ограничены масштабами атомов и фундаментальных частиц, массы и ускорения которых достаточно малы, чтобы длина волны оставалась настолько малой, что ее нельзя было бы наблюдать прямо. Впрочем, прикладывается масса усилий, чтобы увеличить размер системы, демонстрирующей квантовые эффекты.

Квантовая физика - не магия


Предыдущий пункт весьма естественно подводит нас к этому: какой бы странной квантовая физика ни казалась, это явно не магия. То, что она постулирует, странное по меркам повседневной физики, но она строго ограничена хорошо понятными математическими правилами и принципами.

Поэтому если кто-то придет к вам с «квантовой» идеей, которая кажется невозможной, - бесконечная энергия, волшебная целительная сила, невозможные космические двигатели - это почти наверняка невозможно. Это не значит, что мы не можем использовать квантовую физику, чтобы делать невероятные вещи: мы постоянно пишем о невероятных прорывах с использованием квантовых явлений, и они уже порядком удивили человечество, это лишь означает, что мы не выйдем за границы законов термодинамики и здравого смысла.

Если вышеуказанных пунктов вам покажется мало, считайте это лишь полезной отправной точкой для дальнейшего обсуждения.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Согласно определению, Квантовая физика - раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.Квантовая физика и её основные теории - квантовая механика, квантовая теория поля - были созданы в первой половине XX века многими учёными, среди которых Макс Планк, Альберт Эйнштейн, Артур Комптон, Луи де Бройль, Нильс Бор, Эрвин Шрёдингер, Поль Дирак, Вольфганг Паули. Квантовая физика объединяет несколько разделов физики, в которых принципиальную роль играют явления квантовой механики и квантовой теории поля, проявляющиеся на уровне микромира, но и имеющие (что важно) следствия на уровне макромира.

Сюда относятся:

квантовая механика;

квантовая теория поля - и её применения: ядерная физика, физика элементарных частиц, физика высоких энергий;

квантовая статистическая физика;

квантовая теория конденсированных сред;

квантовая теория твёрдого тела;

квантовая оптика.

Сам термин Квант (от лат. quantum - «сколько») - неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения - и последнее называют квантом.

Кванты некоторых полей имеют специальные названия:

фотон - квант электромагнитного поля;

глюон - квант векторного (глюонного) поля в квантовой хромодинамике (обеспечивает сильное взаимодействие);

гравитон - гипотетический квант гравитационного поля;

фонон - квант колебательного движения атомов кристалла.

Вообще Квантование - процедура построения чего-либо с помощью дискретного набора величин, например, целых чисел,

в отличие от построения с помощью непрерывного набора величин, например, вещественных чисел.

В физике:

Квантование - построение квантового варианта некоторой неквантовой (классической) теории или физической модели

в соответствии с фактами квантовой физики.

Фейнмановское квантование - квантование в терминах функциональных интегралов.

Вторичное квантование - метод описания многочастичных квантовомеханических систем.

Квантование Дирака

Геометрическое квантование

В информатике и электронике:

Квантование - разбиение диапазона значений некоторой величины на конечное число интервалов.

Шум квантования - ошибки, возникающие при оцифровке аналогового сигнала.

В музыке:

Квантование нот - перемещение нот к ближайшим ритмическим долям в секвенсоре.

Необходимо отметить, что, несмотря на ряд определенных успехов в описании природы многих явлений и процессов, протекающих в окружающем нас мире, на сегодняшний день квантовая физика вместе со всем комплексом входящих в нее поддисциплин не является цельной законченной концепцией, и хотя изначально подразумевалось, что именно в рамках квантовой физики будет построена единая цельная, непротиворечивая и объясняющая все известные явления дисциплина, на сегодняшний день она таковой не является, например, кватовая физика не в состоянии объяснить принципы и представить работающую модель гравитации, хотя никто не сомневается в том, что гравитация- один из фундаментальных базовых законов вселенной, и невозможность объяснить ее с точки зрения квантовых подходов говорит лишь о том, что они несовершенны, и не являются законченной и окончательной истиной в последней инстанции.

Более того, внутри самой квантовой физики существуют разные течения и направления, представители каждого из которых предлагают свои объяснения для феноменологических экспериментов, не имеющих однозначной трактовки. Внутри самой квантовой физики у представляющих ее ученых нет единого мнения и единого понимания, зачастую их трактовки и объяснения одних и тех же явлений даже противоположны друг другу. И читатель должен понимать, что сама квантовая физика – лишь промежуточная концепция,совокупность состовляющих ее методов, подходов и алгоритмов, и вполне может статься, что через некоторое время будет разработана гораздо более полная, совершенная и непротиворечивая концепция, с иными подходами и иными методами.Тем не менее, для читателя наверняка будут интересны основные явления, которые являются предметом изучения квантовой физики,и которые же при объединении объясняющих их моделей в единую систему вполне могут стать основой для совершенно новой научной парадигмы. Итак, вот эти явления:

1. Корпускулярно-волновой дуализм.

Изначально предполагалось, что корпускулярно-волновой дуализм свойственен только для фотонов света, которые в одних случаях

ведут себя, как поток частиц, а в других, как волны. Но многие эксперименты квантовой физики показали, что данное поведение свойственно не только для фотонов,а и для любых частиц, в том числе, составляющих физически плотную материю. Одним из самых известных экспериментов в этой области является эксперимент с двумя щелями, когда на пластинку, в которой имелись две параллельные узкие прорези, направлялся поток электронов, за пластиной находился непроницаемый для электронов экран, на котором можно было видеть, какие именно появляются на нем картины от попадания электронов. И в одних случаях эта картина представляла из себя две параллельные полоски, такие же, как и две прорези на пластине перед экраном, что характеризовало поведение пучка электронов, вроде как потока маленьких шариков, но в других случаях на экране формировалась картина, характерная при интерференции волн (множество параллельных полос,с самой толстой в центре, и более тонким по краям). При попытке исследовать процесс более детально выяснилось, что один электрон может как пройти только через одну щель, так и через две щели одновременно, что совершенно исключено в том случае, если электрон был бы только твердой частицей. На самом деле, в настоящее время уже существует точка зрения, хотя и не доказанная, но по-видимому очень близкая к истине, и имеющая колоссальное значение с точки зрения миропонимания, что электрон на самом деле не является ни волной, ни частицей, а является переплетением первичных энергий, или материй, скрученных между собой и циркулирующих по определенной орбите, и в некоторых случаях демонстрирующих свойства волны. а в некоторых-свойства частицы.

Многие обыватели очень плохо понимают, а что же такое электронное облако, окружающее атом, о котором рассказывалось еще в

школе, ну что это такое, облако электронов, то есть что их там очень много, этих электронов, нет, не так, облако и есть один и тот же электрон,

просто он как бы размазан по орбите, как капля, и при попытке определить его точное местоположение всегда приходится использовать

вероятностные подходы, так как, хотя было проведено огромное количество экспериментов, никогда не удавалось точно установить, а где же на орбите находится электрон в заданный момент времени, можно определить это только с определенной вероятностью. И это все по той же причине, что электрон не твердая частица, и изображать его, как в школьных учебниках, как твердый шарик, кружащийся на орбите, в корне неверно и формирует у детей ошибочное представление о том,как на самом деле происходят в природе процессы на микроуровне, везде вокруг нас, в том числе, и в нас самих.

2. Взаимосвязь наблюдаемого и наблюдателя, влияние наблюдателя на наблюдаемое.

В тех же экспериментах с пластиной с двумя щелями и экраном, и в подобных им, было неожиданно установлено, что поведение электронов как волны и как частицы находилось во вполне измеримой зависимости от того, присутствовал ли в опыте непосредственный ученый-наблюдатель или нет, и если присутствовал, то какие ожидания у него были от результатов эксперимента!

Когда наблюдавший ученый ожидал, что электроны будут вести себя как частицы, они и вели себя как частицы, но когда его место занимал ученый, ожидавший поведения как волн, электроны вели себя как поток волн! Ожидание наблюдателя напрямую влияет на результат эксперимента, хотя и не во всех случаях, но во вполне измеримом проценте экспериментов! Важно, очень важно понимать, что наблюдаемый эксперимент и сам наблюдатель не являются чем-то отделенным друг от друга, но являются частью одной единой системы, неважно, какие стенки бы при этом между ними ни стояли. Чрезвычайно важно осознавать, что весь процесс нашей жизни представляет из себя непрерывное и беспрестанное наблюдение,

за другими людьми, явлениями и объектами, и самим собой. И хотя ожидание наблюдаемого не всегда точно определяет результат действия,

помимо этого, есть еще и много других факторов, тем не менее, влияние этого весьма ощутимо.

Давайте вспомним, сколько раз в нашей жизни бывали ситуации, когда делает человек какое-то дело, к нему подходит другой и начинает за ним внимательно наблюдать, и в этот момент этот человек либо делает ошибку, либо какое-то непроизвольное действие. И многим знакомо это неуловимое ощущение, когда ты делаешь какое-то действие, за тобой начинают внимательно наблюдать,и в результате у тебя перестает получаться делать это действие, хотя до появления наблюдателя ты делал его вполне успешно.

А теперь вспомним, что большинство людей воспитаны и взращены, как в школах, так и в институтах, что все вокруг, и физически плотная материя, и все предметы, и мы сами, состоим из атомов, а атомы состоят из ядер и вращающихся вокруг них электронов, а ядра - это протоны и нейтроны,и все это такие вот твердые шарики, которые соединены между собой разными типами химических связей, и именно типы этих связей определяют характер и свойства вещества. А о возможном поведении частиц с точки зрения волн, а значит, и всех предметов, из которых эти частицы состоят, и нас самих,

никто не говорит! Большинство этого не знает, в это не верит и этим не пользуется! То есть ожидает от окружающих предметов поведения именно как совокупности твердых частиц. Ну они себя и ведут, как набор частиц в разных комбинациях. Поведения предмета из физически плотной материи, как потока волн, не ожидает почти никто,это кажется невозможным здравому смыслу, хотя никаких фундаментальных препятствий этому нет, а все потому, что в людей с детства закладывают неверные и ошибочные модели и понимание окружающего мира, в результате, когда человек вырастает,он и не пользуется этими возможностями, он даже не знает, что они есть. А как можно пользоваться тем, чего ты не знаешь. И так как таких неверящих и незнающих людей на планете миллиарды, то вполне возможно, что совокупность общественного сознания всех людей земли,как эдакое среднее по больнице, определяет как заданное по умолчанию устройство мира вокруг как набора частиц, строительных блоков, и ничего больше (ведь по одной из моделей все человечество представляет из себя огромную совокупность наблюдателей).

3. Квантовая нелокальность и квантовая сцепленность.

Одним из краеугольных и определеляющих понятий квантовой физики является квантовая нелокальность и напрямую связанная с ней квантовая сцепленность, или квантовая запутанность, что в общем одно и то же. Яркими примерами квантовой сцепленности являются, например, эксперименты, проведенные Аленом Аспектом, в которых проводилась поляризация фотонов, излученных одним и тем же источником, и принятых двумя разными приемниками. И получалось так, что если изменить поляризацию (ориентацию спина) одного фотона, одновременно с этим меняется и поляризация второго фотона, и наоборот, причем происходит это изменение поляризации мгновенно, независимо от расстояния, на котором эти фотоны находятся друг от друга. Выглядит это так, как будто два фотона, излученные одним источником, связаны между собой, хотя никакой явной пространственной связи между ними нет, и изменение параметров одного фотона мгновенно приводит к изменению параметров другого фотона. Важно понимать, что явление квантовой сцепленности, или запутанности, справедливо не только для микро, но и для макроуровня.

Одним из первых наглядных экспериментов в этой области являлся эксперимент российских (тогда еще советских) физиков-торсионщиков.

Схема эксперимента была такова: брали кусок самого обыкновенного бурого угля, добываемого в шахтах для сожжения в котельных,и распиливали его на 2 части. Поскольку с углем человечество знакомо уже очень давно, то он является очень хорошо изученным объектом, и с точки зрения его физических и химических свойств, молекулярных связей, тепла, выделяемого при сгорании на единицу объема и тд. Так вот, один кусок этого угля остался в лаборатории в Киеве, второй кусок угля отвезли в лабораторию в Кракове. Каждый из этих кусков в свою очередь был разрезан на 2 одинаковые части, итого получилось - 2 одинаковых куска одного и того же угля было в Киеве, и 2 одинаковых куска -в Кракове. Затем взяли по одному куску в Киеве и Кракове, и одновременно оба их сожгли, и измерили количество тепла, выделяемого при сгорании. Оно, как и следовало ожидать, оказалось примерно одинаковым. Затем, торсионным генератором был облучен кусок угля в Киеве (тот, который был в Кракове, ничем не облучался), и снова оба этих куска сожгли. И в этот раз оба этих куска дали эффект примерно на 15% больше тепла при сжигании, чем при сожжении первых двух кусков. Увеличение тепловыделения при сгорании угля в Киеве было объяснимо, ведь на него подействовали излучением, в результате его физическая структура изменилась, что и вызвало учеличение тепловыделения при сжигании примерно на 15%. Но вот тот кусок, который находился в Кракове, тоже увеличил тепловыделение на 15%, хотя его ничем не облучали! Этот кусок угля тоже изменил свои физические свойства, хотя облучали не его, а другой кусок (с которым они когда-то были частью одного целого, что является принципиально важным моментом для понимания сути), и расстояние в 2000 км между этими кусками совершенно не было препятствием, изменения структуры у обоих кусков угля происходили мгновенно,что и было установлено при многократном повторении эксперимента. Но надо понимать, что данный процесс совершенно необязательно справедлив только для угля, можно использовать любой другой материал, и эффект, вполне ожидаемо, будет совершенно таким же!

То есть, квантовая сцепленность и квантовая нелокальность справедлива и на макроскопическом мире, а не только в микромире элементарных частиц - в общем-то это вполне справделиво, ведь все макрообъекты и состоят из этих самых элементарных частиц!

Справедливости ради стоит заметить, что физики-торсионщики считали многие квантовые явления проявлением торсионных полей, а некоторые квантовые физики, наоборот, считали торсионные поля частным случаем проявления квантовых эффектов. Что в общем-то неудивительно, ведь и те, и другие изучают и исследуют один и тот же мир вокруг, с одними и теми же универсальными законами, что на микро, что на макроуровне,

и пусть используют при объяснении явлений разные подходы и разную терминологию, суть все равно одна.

А справедливо ли это явление только для неживых объектов, как обстоит дело с живыми организмами, возможно ли там обнаружение похожих эффектов?

Выяснилось, что да, и одним из доказавших это был американский доктор Клив Бакстер. Изначально этот ученый специализировался на испытаниях полиграфа, то есть прибора, детектора лжи, применявшегося для допроса испытуемых в лабораториях ЦРУ. Был проведен целый ряд успешных экспериментов по регистрации и установлению у допрашиваемых разных эмоциональных состояний в зависимости от показаний полиграфа, и разработаны эффективные методики, и сегодня используемые для допросов посредством детектора лжи. Со временем интересы доктора расширились, и он начал эксперименты с растениями и животными. Среди ряда очень интересных результатов следует выделить один, имеющий прямое отношение к квантовой сцепленности и квантовой нелокальности, а именно следующий – у участника эксперимента брали на пробу живые клетки изо рта и помещали их в пробирку (известно, что взятые на пробу клетки

человека живут еще в течение нескольких часов), эту пробирку подключали к полиграфу. Затем человек, у которого брали эту пробу, уезжал за несколько десятков или даже сотен километров, и испытывал там разнообразные стрессовые ситуации. За годы исследований Клив Бакстер хорошо изучил, какие именно показания полиграфа сответствовали определенным стрессовым состояниям человека. Велся строгий протокол, где четко регистрировалось время попадания в стрессовые ситуации, и также велся протокол регистрации показаний полиграфа, подключенного к пробирке с пока еще живыми клетками.И выяснилось удивительное - несмотря на огромные расстояния между испытуемым и пробиркой с живыми клетками, была выявлена почти идеальная синхронность между вхождением человека в стрессовую ситуацию и почти одновременной реакцией клеток в виде соответствующих графиков полиграфа!То есть, хотя клетки, взятые у человека на пробу, и сам человек были разделены в пространстве, по-прежнему между ними существовала связь,и изменение эмоционального и психического состояния человека практически немедленно отражалось в реакции клеток в пробирке.

Результат повторялся множество раз, были попытки установить свинцовые экраны с целью изолировать пробирку с полиграфом, но это не помогало,

все равно даже за свинцовым экраном происходила почти синхронная регистрация изменения состояний.

То есть квантовая сцепленность и квантовая нелокальность справделива и для неживой, и для живой природы, более того, это совершенно естественное природное явление, происходящее повсюду вокруг нас! Думаю, многих читателей интересует, и даже более чем, а возможны ли путешествия не только в пространстве, но и во времени, может быть, существуют какие-либо эксперименты, подтверждающие это, и вероятно, здесь может помочь квантовая сцепленность и квантовая нелокальность? Оказалось, что такие эксперименты есть! Один из них был проведен известным советским астрофизиком Николаем Александровичем Козыревым, и заключался он в следующем. Всем известно, что то положение звезды, которые мы видим на небе, не является истинным ведь за те тысячи лет, что свет летит от звезды до нас, сама она за это время уже сместилась, на вполне измеримое расстояние. Зная расчетную траекторию звезды, можно предположить, в каком месте она должна находиться сейчас, и более того, можно рассчитать, где она должна должна находиться в будущем в следующий момент времени (через временной период, равный тому времени, которое нужно свету, чтобы долететь от нас до этой звезды), если аппроксимировать траекторию ее движения.И с помощью телескопа особой конструкции (зеркального телескопа) было подтверждено, что не только существует тип сигналов,

распространяющийся по вселенной практически мгновенно, независимо от расстояния в тысячи световых лет (по сути, "размазывающийся" в пространстве, как электрон по орбите), но и возможно регистрировать сигнал из будущего положения звезды,то есть того положения, в котором ее еще нет, она там будет еще очень нескоро! Причем именно в этой расчетной точке траектории. Здесь поневоле возникает предположение, что, подобно электрону, "размазанному" по орбите, и являющегося по сути квантово-нелокальным объектом, звезда, вращающаяся вокруг центра галактики, как электрон вокруг ядра атома, также обладает некоторыми похожими свойствами. И также, данный эксперимент доказывает возможность передачи сигналов не только в пространстве,но и во времени. Данный эксперимент достаточно активно дискредитируется в средствах массовой информации,

с приписыванием ему мифических и мистических свойств, но нужно отметить, что он был повторен также уже после смерти Козырева на двух разных лабораторных базах, двумя независимыми группами ученых, одной в Новосибирске (под руководством академика Лаврентьева),а второй на Украине, исследовательской группой Кукоча, причем на разных звездах, и везде были получены одни и те же результаты, подтверждающие исследования Козырева! Справедливости ради, стоит отметить, что и в электротехнике, и в радиотехнике известны случаи, когда при определенных условиях сигнал оказывается принят приемником за несколько мгновений до того, как был излучен источником. Данный факт, как правило, игнорировался и принимался за ошибку,и к сожалению, часто, похоже, у ученых просто не хватало духу назвать черное черным, а белое белым, лишь потому, что это якобы невозможно и этого не может быть.

А были ли еще проведены некие похожие эксперименты, которые бы подтверждали данный вывод? оказывается, были, доктором медицинских наук,академиком Влаилем Петровичем Казначеевым. Было проведено обучение операторов, один из которых находился в Новосибирске, а второй- на севере, на Диксоне. Была разработана система символов, хорошо выученная и усвоенная обоими операторами. В указанное время с помощью зеркал Козырева осуществлялась передача сигнала одним оператором к другому, причем заранее принимающей стороне не было известно, какой именно из символов будет отправлен. Велся строгий протокол, в котором регистрировалось время отправки и приема символов. И после сверки протоколов оказывалось, что некоторые символы были приняты почти одновременно с отправлением, некоторые были приняты с опозданием, что вроде бы возможно и вполне естественно, но вот некоторые символы были приняты оператором ДО того, как были отправлены! То есть, по сути, были отправлены из будущего в прошлое. Данные эксперименты до сих пор не имеют строго официального научного объяснения, но очевидно, что имеют одну и ту же природу. Можно на их основании с достаточной степенью точности предположить, что квантовая сцепленность и квантовая нелокальность не просто возможна, но и существует не только в пространстве, но и во времени!

Kvantinė fizika statusas T sritis fizika atitikmenys: angl. quantum physics vok. Quantenphysik, f rus. квантовая физика, f pranc. physique quantique, f … Fizikos terminų žodynas

У этого термина существуют и другие значения, см. Стационарное состояние. Стационарным состоянием (от лат. stationarius стоящий на месте, неподвижный) называется состояние квантовой системы, при котором её энергия и другие динамические … Википедия

- … Википедия

Имеет следующие подразделы (список неполный): Квантовая механика Алгебраическая квантовая теория Квантовая теория поля Квантовая электродинамика Квантовая хромодинамика Квантовая термодинамика Квантовая гравитация Теория суперструн См. также… … Википедия

Квантовая механика Принцип неопределённости Введение... Математическая формулировка... Основа … Википедия

ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств … Физическая энциклопедия

Физика гиперядер раздел физики на стыке ядерной физики и физики элементарных частиц, в котором предметом исследования выступают ядроподобные системы, содержащие кроме протонов и нейтронов другие элементарные частицы гипероны. Также… … Википедия

Раздел физики, изучающий динамику частиц в ускорителях, а также многочисленные технические задачи, связанные с сооружением и эксплуатацией ускорителей частиц. Физика ускорителей включает в себя вопросы, связанные с получением и накоплением частиц … Википедия

Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

Квантовая логика раздел логики, необходимый для рассуждения о предложениях, которые учитывают принципы квантовой теории. Эта область исследований была основана в 1936 году работой Гарита Бирхофа и Джона фон Неймана, которые пытались… … Википедия

Книги

  • Квантовая физика , Мартинсон Леонид Карлович. Подробно изложен теоретический и экспериментальный материал, лежащий в основе квантовой физики. Большое внимание уделено физическому содержанию основных квантовых понятий и математическому…
  • Квантовая физика , Шеддад Каид-Сала Феррон. Весь наш мир и всё, что в нём находится - дома, деревья и даже люди! - состоит из крошечных частиц. Книга "Квантовая физика" из серии" Первые книжки о науке" расскажет о невидимом для нашего…

WikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 11 человек(а).

Квантовая физика (она же квантовая теория или квантовая механика) – это отдельное направление физики, которое занимается описанием поведения и взаимодействия материи и энергии на уровне элементарных частиц, фотонов и некоторых материалов при очень низких температурах. Квантовое поле определяется как «действие» (или в некоторых случаях угловой момент) частицы, что по размеру находится в пределах величины крошечной физической константы, которая называется постоянной Планка.

Шаги

постоянная Планка

    Начните с изучения физического понятия постоянной Планка. В квантовой механике, постоянная Планка – это квант действия, обозначается как h . Аналогично, для взаимодействующих элементарных частиц, квант момента импульса - это приведенная постоянная Планка (постоянная Планка поделенная на 2 π) обозначается как ħ и называется «h с чертой». Значение постоянной Планка чрезвычайно мало, она объединяет те моменты импульса и обозначения действий, что имеют более общую математическую концепцию. Название квантовая механика подразумевает, что некоторые физические величины, подобные моменту импульса могут меняться только дискретно , а не непрерывным (см. аналоговым) способом.

    • Например, момент импульса электрона, привязанного к атому или молекуле, квантуется и может принимать только значения кратные приведенной постоянной Планка. Это квантование увеличивает орбиталь электрона на серию целого первичного квантового числа. В отличие от этого, момент импульса несвязанных электронов, находящихся рядом, не квантуется. Постоянная Планка также применяется в квантовой теории света, где квантом света является фотон, и материя взаимодействует с энергией посредством перехода электронов между атомами или «квантового скачка» связанного электрона.
    • Единицы постоянной Планка также можно рассматривать как время момента энергии. Например, в предметной области физики элементарных частиц, виртуальные частицы представлены, как масса частиц, которые спонтанно возникают из вакуума на очень малом участке и играют роль в их взаимодействии. Предел жизни этих виртуальных частиц – это энергия (масса) каждой частицы. Квантовая механика имеет большую предметную область, но в каждой математической ее части присутствует постоянная Планка.
  1. Узнайте о тяжелых частицах. Тяжелые частицы проходят от классического к квантовому энергетическому переходу. Даже если свободный электрон, обладающий некоторыми квантовыми свойствами (таким как вращение), в качестве несвязанного электрона, приближается к атому и замедляется (возможно, из-за испускания им фотонов), он переходит от классического к квантовому поведению, так как его энергия опускается ниже энергии ионизации. Электрон связывается с атомом и его момент импульса по отношению к атомному ядру ограничивается тем квантовым значением орбитали, которую он может занять. Этот переход внезапен. Его можно сравнить с механической системой, которая изменяет свое состояние от нестабильного к стабильному, или ее поведение меняется с простого на хаотическое, или можно даже сравнить с ракетным кораблем, который замедляется и идет ниже скорости отрыва, и занимает орбиту вокруг какой-нибудь звезды или другого небесного объекта. В отличие от них, фотоны (которые невесомы) такой переход не осуществляют: они просто пересекают пространство без изменений до тех пор, пока не взаимодействуют с другими частицами и не исчезают. Если вы посмотрите в ночное небо, фотоны от некоторых звезд без изменений пролетают долгие световые годы, затем взаимодействуют с электроном в молекуле вашей сетчатки, испуская свою энергию, а затем исчезая.