Презентация по физике "электрический ток в различных средах". Электрический ток в различных средах Скачать презентацию электрический ток в различных средах








Применение сверхпроводников: Мощные электромагниты, работающие без затрат энергии. (Ускорители элементарных частиц.) Если бы удалось создать сверхпроводящие материалы при температурах, близких к комнатным – стала бы возможна передача электроэнергии без потерь.






Жидкости: проводники (растворы кислот, щелочей и солей); проводники (растворы кислот, щелочей и солей); диэлектрики (дистиллированная вода, керосин …) диэлектрики (дистиллированная вода, керосин …) полупроводники (расплавы сульфидов, расплавленный селен). полупроводники (расплавы сульфидов, расплавленный селен).




Степень диссоциации (доля молекул, распавшихся на ионы) Зависит от: концентрации раствора; концентрации раствора; диэлектрической проницаемости раствора; диэлектрической проницаемости раствора; температуры (с увеличением температуры – возрастает). температуры (с увеличением температуры – возрастает).


Электрический ток в жидкостях Направленное движение положительных ионов к катоду и отрицательных ионов к аноду Направленное движение положительных ионов к катоду и отрицательных ионов к аноду В жидких металлах – движение положительных ионов к катоду и электронов к аноду. В жидких металлах – движение положительных ионов к катоду и электронов к аноду.








Масса вещества, выделившегося на электроде при переносе через раствор заряда 1 Кл. Масса вещества, выделившегося на электроде при переносе через раствор заряда 1 Кл. Отношение массы иона вещества к его заряду. Отношение массы иона вещества к его заряду.


Постоянная Фарадея Постоянная Фарадея Заряд, который надо пропустить через раствор 1-валентного в-ва, чтобы на электроде выделилось 1 моль вещества. Заряд, который надо пропустить через раствор 1-валентного в-ва, чтобы на электроде выделилось 1 моль вещества.




Применение электролиза Гальваностегия (нанесение покрытий). Гальваностегия (нанесение покрытий). Гальванопластика (изготовление копий с рельефных предметов). Гальванопластика (изготовление копий с рельефных предметов). Рафинирование (очистка) металлов. Рафинирование (очистка) металлов. Получение чистых металлов из расплавов природных соединений. Получение чистых металлов из расплавов природных соединений.



Cлайд 1

Презентация на тему: “Электрический ток в различных средах” Выполнила Кравцова Алиса, МЛ№1 г.Магнитогорска, 2009 г.

Cлайд 2

Электрический ток может протекать в пяти различных средах: Металлах Вакууме Полупроводниках Жидкостях Газах

Cлайд 3

Электрический ток в металлах: Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Cлайд 4

Опыты Толмена и Стюарта являются доказательством того, что металлы обладают электронной проводимостью Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией электронов.

Cлайд 5

Вывод:1.носителями заряда в металлах являются электроны; 2. процесс образования носителей заряда – обобществление валентных электронов; 3.сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника – выполняется закон Ома; 4. техническое применение электрического тока в металлах: обмотки двигателей, трансформаторов, генераторов, проводка внутри зданий, сети электропередачи, силовые кабели.

Cлайд 6

Электрический ток в вакууме Вакуум - сильно разреженный газ, в котором средняя длина свободного пробега частицы больше размера сосуда, то есть молекула пролетает от одной стенки сосуда до другой без соударения с другими молекулами. В результате в вакууме нет свободных носителей заряда, и электрический ток не возникает. Для создания носителей заряда в вакууме используют явление термоэлектронной эмиссии.

Cлайд 7

ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ – это явление «испарения» электронов с поверхности нагретого металла. В вакуум вносят металлическую спираль, покрытую оксидом металла, нагревают её электрическим током (цепь накала) и с поверхности спирали испаряются электроны, движением которых можно управлять при помощи электрического поля.

Cлайд 8

На слайде показано включение двухэлектродной лампы Такая лампа называется вакуумный диод

Cлайд 9

Эта электронная лампа носит название вакуумный ТРИОД. Она имеет третий электрод –сетку, знак потенциала на которой управляет потоком электронов.

Cлайд 10

Выводы:1. носители заряда – электроны; 2. процесс образования носителей заряда – термоэлектронная эмиссия; 3.закон Ома не выполняется; 4.техническое применение – вакуумные лампы (диод, триод), электронно – лучевая трубка.

Cлайд 11

Электрический ток в полупроводниках При нагревании или освещении некоторые электроны приобретают возможность свободно перемещаться внутри кристалла, так что при приложении электрического поля возникает направленное перемещение электронов. полупроводники представляют собой нечто среднее между проводниками и изоляторами. Полупроводники - твердые вещества, проводимость которых зависит от внешних условий (в основном от нагревания и от освещения).

Cлайд 12

С понижением температуры сопротивление металлов падает. У полупроводников, напротив, с понижением температуры сопротивление возрастает и вблизи абсолютного нуля они практически становятся изоляторами. Зависимость удельного сопротивления ρ чистого полупроводника от абсолютной температуры T.

Cлайд 13

Собственная проводимость полупроводников Атомы германия имеют четыре слабо связанных электрона на внешней оболочке. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам.Валентные электроны в кристалле германия гораздо сильнее связаны с атомами, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

Cлайд 14

Образование электронно-дырочной пары При повышении температуры или увеличении освещенности некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название «дырок».

Cлайд 15

Примесная проводимость полупроводников Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную проводимости.

Cлайд 16

Электронная и дырочная проводимости. Если примесь имеет валентность большую, чем чистый полупроводник, то появляются свободные электроны. Проводимость –электронная, примесь донорная, полупроводник n – типа. Если примесь имеет валентность меньшую, чем чистый полупроводник, то появляются разрывы связей – дырки. Проводимость – дырочная, примесь акцепторная, полупроводник p – типа.

Cлайд 17

Выводы:1. носители заряда – электроны и дырки; 2. процесс образования носителей заряда – нагревание, освещение или внедрение примесей; 3.закон Ома не выполняется; 4.техническое применение – электроника.

Cлайд 18

Электрический ток в жидкостях Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. Электролитами являются водные растворы неорганических кислот, солей и щелочей.

Cлайд 19

Сопротивление электролитов падает с ростом температуры, так как с ростом температуры растёт количество ионов. График зависимости сопротивления электролита от температуры.

Cлайд 20

Явление электролиза - это выделение на электродах веществ, входящих в электролиты; Положительно заряженные ионы (анионы) под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные ионы (катионы) - к положительному аноду. На аноде отрицательные ионы отдают лишние электроны (окислительная реакция) На катоде положительные ионы получают недостающие электроны (восстановительная).

Cлайд 21

Законы электролиза Фарадея. Законы электролиза определяют массу вещества, выделяемого при электролизе на катоде или аноде за всё время прохождения электрического тока через электролит. k - электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.

Cлайд 22

Вывод:1. носители заряда – положительные и отрицательные ионы; 2. процесс образования носителей заряда – электролитическая диссоциация; 3.электролиты подчиняются закону Ома; 4.Применение электролиза: получение цветных металлов (очистка от примесей - рафинирование); гальваностегия - получение покрытий на металле (никелирование, хромирование, золочение, серебрение и т.д.); гальванопластика - получение отслаиваемых покрытий (рельефных копий).

Cлайд 23

Электрический ток в газах Зарядим конденсатор и подключим его обкладки к электрометру. Заряд на пластинах конденсатора держится сколь угодно долго, не наблюдается перехода заряда с одной пластины конденсатора на другую. Следовательно воздух между пластинами конденсатора не проводит ток. В обычных условиях отсутствует проводимость электрического тока любыми газами. Нагреем теперь воздух в промежутке между пластинами конденсатора, внеся в него зажженную горелку. Электрометр укажет появление тока, следовательно при высокой температуре часть нейтральных молекул газа распадается на положительные и отрицательные ионы. Такое явление называется ионизацией газа.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Электрическая проводимость различных веществ. Электронная проводимость металлов Выполнила Бредер Анастасия Уценица 10 «А» класса

2 слайд

Описание слайда:

3 слайд

Описание слайда:

Характеристика проводников Проводник – тело, проводящее электрический ток. Различают проводники первого и второго рода. Все металлы и их сплавы относятся к проводникам первого рода. Водные растворы кислот, солей и щелочей – второго. Чем выше температура тела, тем меньше оно проводит электрический ток, и, наоборот, со снижением температуры проводимость увеличивается. Металлы с высокой проводимостью используют для кабелей, проводов, обмоток трансформаторов. Металлы и сплавы с низкой проводимостью применяются в лампах накаливания, электронагревательных приборах, реостатах. Основной параметр, характеризующий проводник – электрическое сопротивление. Оно выражается отношением падения напряжения в проводнике к току, протекающему по нему, и зависит от температуры окружающей среды. Хорошим считается проводник, оказывающий небольшое сопротивление. К примеру, алюминиевый проводник с сечение 2,5 квадратных миллиметра, пропускает заряженных частиц намного меньше, чем медный проводник в 2,5 квадратных миллиметра диаметром. Когда пропускают ток через каждый из них с силой тока в 25 ампер (5,5 киловатт), медный проводник сильно нагревается, в то время как алюминиевый нагревается настолько, что расплавляет изоляцию вокруг себя. В таком случае, если нет автоматической защиты, происходит короткое замыкание.

4 слайд

Описание слайда:

Применение проводников Проводники используют для заземления электроустановок. В качестве заземляющих проводников и заземлителей используют металлические конструкции сооружений и зданий, соблюдая при этом непрерывность и проводимость цепи. Для заземляющих проводников используют обычно сталь. Если необходимы гибкие перемычки и в других случаях, применяют медь. Проводники также могут использоваться для выравнивания потенциалов. Особую роль это играет в животноводческих помещениях, где практически всегда сырые полы и большое количество заземленных металлоконструкций различного типа. Животные прикасаются к металлическим поверхностям стоя на влажной поверхности, тем самым получая электрические импульсы. Животноводство становится неэффективным из-за низкой удойности коров. Нежелательные последствия предотвращают, выравнивая потенциалы поверхности пола и металлических конструкций, путем закладки заземленных круглых стальных проводников. Проводники используют в громоотводе, отводя молнию в землю, чтобы она не нанесла никаких повреждений. Существуют проводники с высоким удельным сопротивлением, которые стойкие к окислению. Такие материалы применяют в электронагревательных приборах, они обладают высокой пластичностью и могут вытягиваться в тонкую проволоку и выкатываться в фольгу. Одним из таких проводником является алюминий.

5 слайд

Описание слайда:

6 слайд

Описание слайда:

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами - электронами.

7 слайд

Описание слайда:

Движение электронов в металле Электроны под влиянием постоянной силы, действующей на них со стороны электрического поля, приобретают определенную скорость упорядоченного движения. Эта скорость не увеличивается в дальнейшем со временем, т.к. со стороны ионов кристаллической решетки на электроны действует некоторая тормозящая сила. Эта сила подобна силе сопротивления, действующей на камень, когда он тонет в воде. Построить удовлетворительную количественную теорию движения электронов в металле на основе законов классической механики невозможно. Дело в том, что условия движения электронов в металле таковы, что классическая механика Ньютона неприменима для описания этого движения.

8 слайд

Описание слайда:

1 слайд

2 слайд

3 слайд

Электрические свойства веществ Проводники Полупроводники Диэлектрики Хорошо проводят электрический ток К ним относятся металлы, электролиты, плазма … Наиболее используемые проводники – Au, Ag, Cu, Al, Fe … Практически не проводят электрический ток К ним относятся пластмассы, резина, стекло, фарфор, сухое дерево, бумага … Занимают по проводимости промежуточное положение между проводниками и диэлектриками Si, Ge, Se, In, As Разные вещества имеют различные электрические свойства, однако по электрической проводимости их можно разделить на 3 основные группы: Вещества

4 слайд

5 слайд

Природа электрического тока в металлах Электрический ток в металлических проводниках никаких изменений в этих проводниках, кроме их нагревания не вызывает. Концентрация электронов проводимости в металле очень велика: по порядку величины она равна числу атомов в единице объёма металла. Электроны в металлах находятся в непрерывном движении. Их беспорядочное движение напоминает движение молекул идеального газа. Это дало основание считать, что электроны в металлах образуют своеобразный электронный газ. Но скорость беспорядочного движения электронов металле значительно больше скорости молекул в газе (она составляет примерно 105 м/с). Электрический ток в металлах

6 слайд

Опыт Папалекси-Мандельштама Описание опыта: Цель: выяснить какова проводимость металлов. Установка: катушка на стержне со скользящими контактами, присоединены к гальванометру. Ход эксперимента: катушка раскручивалась с большой скоростью, затем резко останавливалась, при этом наблюдался отброс стрелки гальванометра. Вывод: проводимость металлов - электронная. Электрический ток в металлах

7 слайд

Металлы имеют кристаллическое строение. В узлах кристаллической решетки расположены положительные ионы, совершающие тепловые колебания вблизи положения равновесия, а в пространстве между ними хаотично движутся свободные электроны. Электрическое поле сообщает им ускорение в направлении, противоположном направлению вектора напряженности поля. Поэтому в электрическом поле беспорядочно движущиеся электроны смещаются в одном направлении, т.е. движутся упорядоченно. - - - - - - - - - - Электрический ток в металлах

8 слайд

Зависимость сопротивления проводника от температуры При повышении температуры удельное сопротивление проводника возрастает. Коэффициент сопротивления равен относительному изменению сопротивления проводника при нагревании на 1К. Электрический ток в металлах

9 слайд

Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства

10 слайд

Полупроводники Полупроводники – вещества у которых удельное сопротивление с повышением температуры уменьшается Собственная проводимость полупроводников Примесная проводимость полупроводников p – n переход и его свойства Электрический ток в полупроводниках

11 слайд

Собственная проводимость полупроводников Рассмотрим проводимость полупроводников на основе кремния Si Кремний – 4 валентный химический элемент. Каждый атом имеет во внешнем электронном слое по 4 электрона, которые используются для образования парноэлектронных (ковалентных) связей с 4 соседними атомами При обычных условиях (невысоких температурах) в полупроводниках отсутствуют свободные заряженные частицы, поэтому полупроводник не проводит электрический ток Si Si Si Si Si - - - - - - - - Электрический ток в полупроводниках

12 слайд

Рассмотрим изменения в полупроводнике при увеличении температуры При увеличении температуры энергия электронов увеличивается и некоторые из них покидают связи, становясь свободными электронами. На их месте остаются некомпенсированные электрические заряды (виртуальные заряженные частицы), называемые дырками. Si Si Si Si Si - - - - - - + свободный электрон дырка + + - - Электрический ток в полупроводниках

13 слайд

Таким образом, электрический ток в полупроводниках представляет собой упорядоченное движение свободных электронов и положительных виртуальных частиц - дырок Зависимость сопротивления от температуры R (Ом) t (0C) металл R0 полупроводник При увеличении температуры растет число свободных носителей заряда, проводимость полупроводников растет, сопротивление уменьшается. Электрический ток в полупроводниках

14 слайд

Донорные примеси Собственная проводимость полупроводников явно недостаточна для технического применения полупроводников. Поэтому для увеличение проводимости в чистые полупроводники внедряют примеси (легируют) , которые бывают донорные и акцепторные Si Si - - - As - - - Si - Si - - При легировании 4–валентного кремния Si 5–валентным мышьяком As, один из 5 электронов мышьяка становится свободным. As – положительный ион. Дырки нет! Такой полупроводник называется полупроводником n – типа, основными носителями заряда являются электроны, а примесь мышьяка, дающая свободные электроны, называется донорной. Электрический ток в полупроводниках

15 слайд

Акцепторные примеси Такой полупроводник называется полупроводником p – типа, основными носителями заряда являются дырки, а примесь индия, дающая дырки, называется акцепторной Если кремний легировать трехвалентным индием, то для образования связей с кремнием у индия не хватает одного электрона, т.е. образуется дырка Основа дает электроны и дырки в равном количестве. Примесь – только дырки. Si - Si - In - - - + Si Si - - Электрический ток в полупроводниках

16 слайд

17 слайд

Дистиллированная вода не проводит электрического тока. Опустим кристалл поваренной соли в дистиллированную воду и, слегка перемешав воду, замкнем цепь. Мы обнаружим, что лампочка загорается. При растворении соли в воде появляются свободные носители электрических зарядов. Электрический ток в жидкостях

18 слайд

Как возникают свободные носители электрических зарядов? При погружении кристалла в воду к положительным ионам натрия, находящимся на поверхности кристалла, молекулы воды притягиваются своими отрицательными полюсами. К отрицательным ионам хлора молекулы воды поворачиваются положительными полюсами. Электрический ток в жидкостях

19 слайд

Электролитическая диссоциация – это распад молекул на ионы под действием растворителя. Подвижными носителями зарядов в растворах являются только ионы. Жидкий проводник, в котором подвижными носителями зарядов являются только ионы, называют электролитом. Электрический ток в жидкостях

20 слайд

Как проходит ток через электролит? Опустим в сосуд пластины и соединим их с источником тока. Эти пластины называются электродами. Катод -пластина, соединенная с отрицательным полюсом источника. Анод - пластина, соединенная с положительным полюсом источника. Электрический ток в жидкостях

21 слайд

Под действием сил электрического поля положительно заряженные ионы движутся к катоду, а отрицательные ионы к аноду. На аноде отрицательные ионы отдают свои лишние электроны, а на катоде положительные ионы получают недостающие электроны. Электрический ток в жидкостях

22 слайд

Электролиз На катоде и аноде выделяются вещества, входящие в состав раствора электролита. Прохождение электрического тока через раствор электролита, сопровождающееся химическими превращениями вещества и выделением его на электродах, называется электролизом. Электрический ток в жидкостях

23 слайд

Закон электролиза Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит: m = kQ = kIt. Это закон электролиза. Величину k называют электрохимическим эквивалентом. Опыты Фарадея показали, что масса выделившегося при электролизе вещества зависит не только от величины заряда, но и от рода вещества. Электрический ток в жидкостях

24 слайд

25 слайд

Газы в нормальном состоянии являются диэлектриками, так как состоят из электрически нейтральных атомов и молекул и поэтому не проводят электричества. Изолирующие свойства газов объясняются тем, что атомы и молекулы газов в естественном состоянии являются нейтральными незаряженными частицами. Отсюда ясно, что для того, чтобы сделать газ проводящим, нужно тем или иным способом внести в него или создать в нем свободные носители заряда – заряженные частицы. При этом возможны два случая: либо эти заряженные частицы создаются действием какого-нибудь внешнего фактора или вводятся в газ извне – несамостоятельная проводимость, либо они создаются в газе действием самого электрического поля, существующего между электродами – самостоятельная проводимость. Электрический ток в газах Электрический ток в газах

26 слайд

Проводниками могут быть только ионизированные газы, в которых содержатся электроны, положительные и отрицательные ионы. Ионизацией называется процесс отделения электронов от атомов и молекул. Ионизация возникает под действием высоких температур и различных излучений (рентгеновских, радиоактивных, ультрафиолетовых, космических лучей), вследствие столкновения быстрых частиц или атомов с атомами и молекулами газов. Образовавшиеся электроны и ионы делают газ проводником электричества. Процессы ионизации: электронный удар термическая ионизация фотоионизация Электрический ток в газах

27 слайд

Типы самостоятельных разрядов В зависимости от процессов образования ионов в разряде при различных давлениях газа и напряжениях, приложенных к электродам, различают несколько типов самостоятельных разрядов: тлеющий искровой коронный дуговой Электрический ток в газах

28 слайд

Тлеющий разряд Тлеющий разряд возникает при низких давлениях (в вакуумных трубках). Для разряда характерна большая напряженность электрического поля и соответствующее ей большое падение потенциала вблизи катода. Его можно наблюдать в стеклянной трубке с впаянными у концов плоскими металлическими электродами. Вблизи катода располагается тонкий светящийся слой, называемый катодной светящейся пленкой Электрический ток в газах