Чему равна релятивистская масса. Понятие релятивистской массы

Видимо, интернет-баталии насчет того, растет ли масса тела со скоростью или нет, будут вестись вечно. Уж не раз объясняли подробно, как, во-первых, этот вопрос правильно формулируется, а во-вторых, как на него ответить. Лев Борисович Окунь потратил немало усилий, чтобы максимально доступным языком объяснить всем сомневающимся, что современная физика использует только одно, релятивистски-инвариантное понятие массы и что понятие растущей со скоростью «релятивистской массы» — это педагогический вирус. Он даже опубликовал на этот счет отдельную книжку . Но только всё равно приходят новые люди и всё начинается сначала.

Однако в этот раз, в комментариях к одной новости на Элементах, этот разговор принял уже несколько иной оборот. Теперь высказывается мнение, что, мол, это Окунь «постановил», что масса от скорости не зависит, в то время как великие физики прошлого (перечисляются Борн, Паули, Фейнман) прямо писали, что масса со скоростью растет. Типа, это что же, Окунь единолично изменил базовое понятие физики?!

По этому поводу чувствую, что нужно высказаться еще раз, — и, надеюсь, в последний раз, — по поводу «релятивистской массы».

Во-первых, эти баталии касаются не физического явления или свойства, а термина. Они не несут никаких последствий для самой физики, они имеют лишь педагогическую ценность. И Паули, и Фейнман, и Окунь, и все остальные физики, которые занимаются физикой элементарных частиц или другими релятивистскими разделами физики, — все они полностью сходятся друг с другом в формулах, выражающих физические законы. Поэтому не надо приписывать Окуню мнимых «революций» в релятивистской механике.

Во-вторых, все физики, работа которых опирается на релятивистскую механику, в частности, физика частиц, гравитация, атомная физика и т.п., уже много десятилетий оперируют только понятием массы как лоренц-инвариантной величины. Масса — это присущая телу характеристика, не зависящая от системы отсчета и эквивалентная энергии покоя (дальнейшие подробности — на страничке про инвариантную массу). Энергия — со скоростью растет, энергия покоя и масса — нет.

Несмотря на то, что формально можно использовать величину «релятивистская масса» (т.е. просто энергия, деленная на c 2), она не несет никакой полезной нагрузки, а только плодит ненужные сущности и затрудняет словесное описание формул. Так было принято задолго до Окуня и давным-давно стало стандартом в физике. В этом смысле, все учебники, которые повторяют слова про массу, растущую со скоростью, отстали от современной терминологии более чем на полвека.

На всякий случай, чтоб не думали, что Окунь тут идет против остальных, вот от Мэтта Стрэсслера, видного физика и автора одного из самых известных блогов по физике частиц.

В-третьих, понятие релятивистской массы не только пустое в научном смысле, но и вредное — в педагогическом. Масса, растущая со скоростью, формирует у человека яркое, интуитивно привлекательное, но неправильное понимание явлений, развивает неправильную физическую интуицию. Если человек собирается заниматься физикой всерьез, то ему всё равно придется переучиться. Но даже если не собирается, эта интуиция будет постоянно ему подсовывать неверное толкование некоторых физических ситуаций. Вот несколько примеров, когда интуиция, основанная на релятивистской массе, приводит к неправильному предсказанию или к несостыковке с другими физическими утверждениями.

  • Если тело движется со скоростью, очень близкой к скорости света, и его масса растет (а продольный размер сокращается), то значит, рано или поздно радиус Шварцшильда превысит размер тела и оно схлопнется в черную дыру. Разумеется, ничего подобного не происходит.
  • Физики говорят, что хиггсовское поле отвечает за массу частиц (заметьте, без каких-либо эпитетов насчет массы). Получается, что чем быстрее частица движется, тем сильнее на нее действует хиггсовское поле. Это тоже неверно.
  • В согласии с концепцией релятивистской массы, все фотоны тоже обладают какой-то массой. Получается, хиггсовское поле действует и на фотон? Нет конечно, фотон остается безмассовым — это важнейшее следствие хиггсовского механизма Стандартной модели.
  • Физики говорят, что все электроны идентичны, и поэтому, в частности, работает принцип запрета Паули. Но как же они могут быть идентичны, если у них разные массы?
  • Электрон в неподвижном атоме, в целом, неподвижен, т.е. в целом он никуда не летит. Но в согласии с квантовой механикой, он там как-то движется, причем у него там нет какой-то определенной скорости. Так какую массу мы ему будем приписывать?
В общем, если у вас есть ещё какие-то сомнения, то, пожалуйста, примите как факт следующее утверждение. Сами физики давно договорились, как и что называть и что в этом случае от чего зависит. Физики также накопили вековой опыт преподавания релятивистской механики и знают подводные камни, на которые натыкаются студенты. Весь этот опыт показывает, что понятие релятивистской массы вредное. Если вы хотите его придерживаться, — ради бога. Но только учтите, что вы идете против рекомендаций всей современной физики и что вы постоянно рискуете ошибиться, воспринимая это понятие слишком буквально.

Для фотона никакого гравитационного отклонения траектории не происходит . Фотон движется прямолинейно и равномерно по своей мировой линии в 4-х мерном пространстве-времени. Для нас же, наблюдателей движения фотона (света) в 3-х мерном пространстве в заданном времени, траектория фотона выглядит искривленной, из-за кривизны пространства вблизи массивных обьектов.

Такого понятия как "релятивистская масса" не существует в природе . Это впервые заметил (1989 г) Академик Лев Борисович Окунь. Он ввёл даже специальный термин - "педагогический вирус", кочующий из одного учебника в другой. Одну из последних публикаций по этому вопросу можете прочитать . Крутым парням рекомендую ознакомиться по этому поводу с научной статьей в .

Л. Окунь указывает, что из формулы Эйнштейна для энергии покоя, Е₀ = mc², и формулы полной энергии Е = γmc², не следует определение релятивистской массы (m′=γm), а следует лишь формула роста полной энергии со скоростью по релятивистскому закону Е = γЕ₀. Математически, определение "релятивистской массы" безупречно. Но масса не может зависеть от скорости. Только представьте себе - 3 компоненты массы?! Нонсенс.

И фотон и мы живем в одном и том же 4-х мерном пространстве-времени. Но измерять, видеть, чувствовать, наблюдать мы мощем только в 3-х мерном пространстве для каждого заданного момента времени в направлении в будущее. 4-х мерное пространство-время нам не доступно физически никак. Пути туда нет. О его существовании мы догадываемся из наблюдаемых релятивистских и гравитационных эффектов. Можно так же задать вопрос: "А почему это так?" или "Так ли это на самом деле?". Точного ответа на них нет и по-видимому не предвидется.

Ответить

Что фотоны как то поглощаются черными дырами вроде установлено.Но они безмассовые и гравитационного взаимодействия вроде не должно быть.Мне пока не "доходит".Ньютон сказап:нет вверх-вниз,а есть гравитация.Эйнштейн сказал:нет гравитации,а есть искривление пространства-времени.Как Ньютон додумался -вроде "врубиться "можно. Какие мозги надо,чтобы "постичь" Эйнштейна-не "врублюсь".Один из "упоров"-4 мерное пространство.Многомерные пространства в математике не диковинка (многомерные пространства и линейная алгебра во многих хороших учебниках).Но и там "заковыки":Римановы пространства,Гильбертовы,есть еще Банаховы и др.,которые к тому же могут быть сопряженными и еще самосопряженными.И сверху инструмент к ним в виде тензорного исчисления.Полный "абажур".Но охоту отбивать вовсе не намерен.Попробую некоторый луч света ввести в темное царство.Ведь на самом деле мы и 3-х мерное пространство не воспринимаем (воспринимаем его двумерную проекцию).Действительно.Кто может воспринять даже простой 3-х мерный куб сразу со всех сторон?Проще: если грани покрашены в разные цвета,то вы никак не скажете,какого цвета задняя или нижняя грани пока не повернете куб.А мы пытаемся"постичь" 4-х мерный куб сразу со всех сторон?!По крайней мере надо самому быть 4-х мерным или даже 5-ти мерным.Остается постигать абстрактными методами по крайней мере математикой.Не сильно обрадовал,но хоть возможно убедил,что биться лбом о 4-х мерную стенку не стоит.Все равно лоб не 4-х мерный,а всего лишь 3-х мерный.

Инвариантная масса - исключительно важная характеристика коллектива частиц, описывающая их разлет относительно друг друга. Без измерения и обсуждения инвариантной массы не обходится практически никакой анализ современных коллайдерных данных. Однако прежде, чем рассказывать об инвариантной массе, начнем с одного недоразумения, касающегося понятия массы.

Масса не растет со скоростью!

Есть широко распространенное убеждение, что масса растет со скоростью; ее часто называют «релятивистской массой». Это убеждение основано на неправильной интерпретации связи между энергией и массой: мол, раз с увеличением скорости растет энергия, значит растет и масса. Это утверждение встречается не только во многих популярных книжках, но и в школьных и даже в вузовских учебниках физики.

Это утверждение неверно (для пущей педантичности см. приписку ниже мелким шрифтом). Масса - в том виде, в котором это слово понимает современная физика, и в особенности физика элементарных частиц, - от скорости не зависит . От скорости зависит энергия частицы и ее импульс, при околосветовых скоростях меняются законы динамики и кинематики. Но масса частицы - величина, которая связана с полной энергией E и импульсом p формулой

m 2 = E 2 /c 4 – p 2 /c 2 ,

остается неизменной. В популярных материалах эту величину называют «массой покоя» и противопоставляют ее «релятивистской массе», но подчеркнем еще раз: это разделение проводится только в популярных материалах и в некоторых курсах физики. В современной физике нет никакой «релятивистской массы», в ней есть только «масса», определенная этим уравнением. Термин «релятивистская масса» - это неудачный прием популяризации физики, давным-давно уже от настоящей физики оторвавшийся.

Для читателя, который уже наслышан об этой проблеме, а может быть, даже поучаствовал в спорах по поводу нее, такая точка зрения может показаться несколько «экстремистской». Ведь формально мы можем ввести понятие релятивистской массы и переписать все уравнения с помощью нее, а не настоящей массы, и никакой математической ошибки мы при этом не совершим. Так почему же «релятивистскую массу» лишают права на существование?

Дело в том, что этот термин бесплоден с научной точки зрения и вреден с педагогической. Во-первых, опыт показывает, что он вовсе не упрощает понимание теории относительности (если под пониманием подразумевать что-то большее, чем просто знание нескольких слов). Во-вторых, он сбивает с толку «житейскую интуицию» непосвященного читателя и часто приводит его к ошибочным умозаключениям (например, о том, что тело, движущееся со скоростью, достаточно близкой к скорости света, неизбежно превратится в черную дыру из-за «возросшей массы»). Этот термин подспудно настраивает интуицию читателя на принятие выводов о том, что с частицей могут происходить изменения, зависящие от системы отсчета. И наконец, - повторим снова! - «релятивистская масса» не соответствует ни одной реальной характеристике частицы, которые знает современная физика; это исключительно прием популяризации физики.

Поэтому с образовательной точки зрения намного полезнее вообще не вводить этот термин.

Подробнее про происхождение и вред этого заблуждения см. в многочисленных публикациях выдающегося физика Льва Борисовича Окуня, например в заметке «Релятивистская» кружка .

Инвариантная масса

Пусть у нас есть две частицы с энергиями E 1 и E 2 и импульсами p 1 и p 2 (жирный шрифт указывает на то, что импульс - вектор). Это могут быть две сталкивающиеся или две разлетающиеся частицы, неважно. Их массы, разумеется, вычисляются по энергиям и импульсам в соответствии с приведенной выше формулой.

Мы хотим теперь что-то узнать о свойстве этой пары частиц как единой системы . Мы можем написать полную энергию E 12 и полный импульс p 12 этой системы, E 12 = E 1 + E 2 , p 12 = p 1 + p 2 , при этом импульсы суммируются как вектора. А значит, мы можем вычислить и некую похожую на массу величину m 12 по формуле

m 12 2 = E 12 2 /c 4 – p 12 2 /c 2 .

Эта величина m 12 и называется инвариантной массой пары частиц. Ее важнейшее свойство состоит как раз в том, что она инвариантна, то есть не зависит от системы отсчета, в которой мы проводим вычисление (хотя энергии и импульсы зависят).

Обратим внимание, что инвариантная масса вовсе не равна сумме масс двух частиц! Более того, несложно доказать, что m 12 ≥ m 1 + m 2 , причем равенство возможно только тогда, когда две частицы движутся с одинаковыми скоростями (то есть первая частица покоится с точки зрения второй). Итак, для пары частиц у нас имеются три независимых характеристики, не зависящие от системы отсчета: m 1 , m 2 и m 12 .

Если мы изучаем не две частицы, а больше, то инвариантные массы по этим правилам можно сосчитать не только для всей системы целиком, но и для любой пары, тройки и вообще любой комбинации этих частиц. Заметьте, что сосчитав эти массы, мы еще ничего не утверждаем про сами частицы, про их происхождение, про то, в каких «отношениях» они состоят друг с другом. Это просто дополнительные кинематические величины, которые не зависят от системы отсчета.

Инвариантная масса как «метка» происхождения частиц

Инвариантная масса характеризует, насколько бурно частицы разлетаются друг от друга , насколько интенсивен этот разлет (или их столкновение, если речь идет о сталкивающихся частицах). Говоря совсем упрощенно, если разлет частиц представить себе как «микровзрыв» коллектива частиц, то инвариантная масса характеризует «энергетический баланс» этого микровзрыва. Для примера на рис. 1 показаны две ситуации, в которых энергии двух частиц E 1 и E 2 и модули их импульсов |p 1 | и |p 2 | одни и те же, но инвариантные массы разные.

Главная польза от инвариантной массы в том, что она помогает узнать происхождение этих частиц : получились ли они от распада какой-то одной промежуточной нестабильной частицы или же родились в разных процессах. В первом случае их инвариантная масса примерно совпадает с массой этой нестабильной частицы, а во втором случае она может быть произвольной. Этот прием сплошь и рядом используется при анализе результатов столкновений элементарных частиц; именно с помощью него мы узнаем о быстротечном существовании нестабильных частиц и умеем отделять разные типы событий друг от друга.

Возьмем ставший уже знаменитым пример: поиск хиггсовского бозона на Большом адронном коллайдере через его распад на два фотона. Если хиггсовский бозон рождается в столкновении, он может распасться на два фотона (рис. 2, слева). Но такая же пара фотонов может получиться и сама по себе, безо всяких промежуточных частиц, просто за счет излучения фотонов кварками (рис. 2, справа). Детектор в обоих случаях увидит пару фотонов и не сможет сказать, за счет чего они появились. Просто детектируя фотоны, мы не сможем доказать, что у нас действительно иногда происходит рождение и распад бозона Хиггса.

На помощь приходит изучение инвариантной массы двух фотонов m γγ . В каждом конкретном событии с двумя фотонами надо вычислить эту инвариантную массу, а затем подсчитать, сколько событий с какой инвариантной массой у нас получилось, и построить график: количество событий в зависимости от m γγ . Если хиггсовского бозона в данных нет (или пока не видно), эта зависимость будет плавной - ведь энергии и импульсы двух фотонов не связаны, поэтому инвариантная масса может получиться какой угодно. Если же хиггсовский бозон есть, на графике должен проступить бугорок. Этот бугорок - это те дополнительные события, которые получились именно за счет рождения бозона Хиггса и его распада на два фотона. Положение бугорка укажет на массу бозона, а его высота - на интенсивность этого процесса.

На рис. 3 показаны данные детектора ATLAS по результатам 2011-го и 2012 года в области инвариантной массы двух фотонов от 100 до 160 ГэВ. Виден более-менее плавный фон, уменьшающийся с ростом m γγ и вызванный как раз независимым рождением двух фотонов. И на этом фоне хорошо заметен нужный бугорок в районе 125 ГэВ. Он не слишком сильный, но благодаря маленьким погрешностям у него большая статистическая значимость, а значит, существование новой частицы, распадающейся на два фотона, можно считать экспериментально доказанным.

Дополнительная литература:

  • Г. И. Копылов. «Всего лишь кинематика», вып. 11

Из предыдущей главы мы усвоили, что масса тела растет с увеличением его скорости. Но никаких доказательств этого, похожих на те рассуждения с часами, которыми мы обосновали замедление времени, мы не привели. Сейчас, однако, мы можем доказать, что (как следствие принципа относительности и прочих разумных соображений) масса должна изменяться именно таким образом. (Мы должны говорить о «прочих сооб­ражениях» по той причине, что нельзя ничего доказать, нельзя надеяться на осмысленные выводы, не опираясь на какие-то законы, которые предполагаются верными.) Чтобы не изучать

законы преобразования силы, обратимся к столкновениям частиц. Здесь нам не понадобится закон действия силы, а хватит только предположения о сохранении энергии и импульса. Кроме того, мы предположим, что импульс движущейся ча­стицы - это вектор, всегда направленный по ее движению. Но мы не будем считать импульс пропорциональным скорости, как это делал Ньютон. Для нас он будет просто некоторой функцией скорости. Мы будем писать вектор импульса в виде вектора скорости, умноженного на некоторый коэффициент

p=m 0 v . (16.8)

Индекс v у коэффициента будет напоминать нам, что это функция скорости v. Будем называть этот коэффициент «мас­сой». Ясно, что при небольших скоростях это как раз та самая масса, которую мы привыкли измерять. Теперь, исходя из того принципа, что законы физики во всех системах координат одинаковы, попробуем показать, что формула для m v должна иметь вид m 0 /(1-v 2 /c 2 ).

Пусть у нас есть две частицы (к примеру, два протона), которые между собой совершенно одинаковы и движутся на­встречу друг другу с одинаковыми скоростями. Их общий импульс равен нулю. Что с ними случится? После столкновения их направления движения должны все равно остаться противо­положными, потому что если это не так, то их суммарный вектор импульса будет отличен от нуля, т. е. не сохранится. Раз частицы одинаковы, то и скорости их должны быть оди­наковы; более того, они просто должны остаться прежними, иначе энергия при столкновении изменится. Значит, схема такого упругого обратимого столкновения будет выглядеть, как на фиг. 16.2,а: все стрелки одинаковы, все скорости равны. Предположим, что такие столкновения всегда можно подго­товить, что в них допустимы любые углы 0 и что начальные скорости частиц могут быть любыми.

Фиг. 16.2. Упругое столкновение одинаковых тел, движущихся с равными скоростями в противоположных направлениях, при раз­личном выборе систем координат.

Далее, напомним, что одно и то же столкновение выглядит по-разному, смотря по тому, как повернуты оси. Для удобства мы так повернем оси, чтобы горизонталь делила пополам угол между направлениями частиц до и после столкновения (фиг. 16.2,б). Это то же столкновение, что и на фиг. 16.2,а, но с повернутыми осями.

Теперь начинается самое главное: взглянем на это столкно­вение с позиций наблюдателя, движущегося на автомашине со скоростью, совпадающей с горизонтальной компонентой ско­рости одной из частиц. Как оно будет выглядеть? Наблюдателю покажется, что частица1 поднимается прямо вверх (горизон­тальная компонента у нее пропала), а после столкновения падает прямо вниз по той же причине (фиг. 16.3, а).

Фиг. 16.3. Еще две картины того же столкновения (видимые из дви­жущихся автомашин).

Зато частица 2 движется совсем иначе, она проносится мимо с колоссальной скоростью и под малым углом (но этот угол и до и после столк­новения одинаков). Обозначим горизонтальную компоненту скорости частицы 2 через и, а вертикальную скорость части­цы 1 - через w.

Чему же равна вертикальная скорость utg частицы 2? Зная это, можно получить правильное выражение для импульса, пользуясь сохранением импульса в вертикальном направлении. (Сохранение горизонтальной компоненты импульса и так обеспечено: у обеих частиц до и после столкновения эта ком­понента одинакова, а у частицы 1 она вообще равна нулю. Так что следует требовать только сохранения вертикальной скорости utga.) Но вертикальную скорость можно получить, просто взглянув на это столкновение с другой точки зрения! Посмотрите на столкновение, изображенное на фиг. 16.3, а из автомашины, которая движется теперь налево со скоростью и. Вы увидите то же столкновение, но перевернутое «вверх ногами» (фиг. 16.3, б). Теперь уже частица 2 упадет и подскочит со скоростью w, а горизонтальную скорость и приобретет частица 1. Вы уже, конечно, догадываетесь, чему равна горизонтальная скорость utg ; она равна w (1- u 2 /c 2) [см. уравнение (16.7)]. Кроме того, нам известно, что изменение вертикального им­пульса вертикально движущейся частицы равно

p=2m w w

(двойка здесь потому, что движение вверх перешло в движение вниз). У частицы, движущейся косо, скорость равна v, ее компоненты равны u и w (1-u 2 /c 2 ), а масса ее m v . Изменение вертикального импульса этой частицы р"=2т v w (1-u 2 /с 2), так как в соответствии с нашим предположением (16.8) любая компонента импульса равна произведению одноименной ком­поненты скорости на массу, отвечающую этой скорости. Но суммарный импульс равен нулю. Значит, и вертикальные импульсы должны взаимно сократиться, отношение же массы, движущейся со скоростью w, к массе, движущейся со скоростью v, должно оказаться равным

m w /m v =(1-u 2 /c 2). (16.9).

Перейдем к предельному случаю, когда w стремится к нулю. При очень малых w величины v и u практически совпадут, m w m 0 , a m v m u . Окончательный результат таков:

Проделайте теперь такое интересное упражнение: проверьте, будет ли выполнено условие (16.9) при произвольныхw, когда масса подчиняется формуле (16.10). При этом скорость v, стоящую в уравнении (16.9), можно найти из прямоугольного треугольника

Вы увидите, что (16.9) выполняется тождественно, хотя выше нам понадобился только предел этого равенства приw- >0. Теперь перейдем к дальнейшим следствиям, считая уже, что, согласно (16.10), масса зависит от скорости. Рассмотрим так называемое неупругое столкновение. Для простоты пред­положим, что из двух одинаковых тел, сталкивающихся с равными скоростями w, образуется новое тело, которое больше не распадается (фиг. 16.4,а).

Фиг. 16.4. Две картины неупругого соударения тел равной массы.

Массы тел до столкновения равны, как мы знаем, m 0 / (1- w 2 /c 2 ). Предположив сохраня­емость импульса и приняв принцип относительности, можно продемонстрировать интересное свойство массы вновь образо­ванного тела. Представим себе бесконечно малую скорость и, поперечную к скоростям w (можно было бы работать и с ко­нечной скоростью и, но с бесконечно малым значением и легче во всем разобраться), и посмотрим на это столкновение, дви­гаясь в лифте со скоростью -u . Перед нами окажется картина, изображенная на фиг. 16.4, а. Составное тело обладает неиз­вестной массой М. У тела 1, как и у тела 2, есть компонента скорости и, направленная вверх, и горизонтальная компонента, практически равная w. После столкновения остается масса М, движущаяся вверх со скоростью u , много меньшей и скорости света и скорости w. Импульс должен остаться прежним; по­смотрим поэтому, каким он был до столкновения и каким стал потом. До столкновения он был равен p~=2m w u, а потом стал р"= M u u . Но M u из-за малости u, по существу, совпадает с М 0 . Благодаря сохранению импульса

М 0 =2m w . (16.11)

Итак, масса тела, образуемого при столкновении двух одина­ковых тел, равна их удвоенной массе. Вы, правда, можете сказать: «Ну и что ж, это просто сохранение массы». Но не торопитесь восклицать: «Ну и что ж!», потому что сами-то массы тел были больше, чем когда тела неподвижны. Они вносят в суммарную массу М не массу покоя, а больше. Не правда ли, поразительно! Оказывается, сохранение импульса в столк­новении двух тел требует, чтобы образуемая ими масса была больше их масс покоя, хотя после столкновения эти тела сами придут в состояние покоя!

Рисунок 1. Релятивистская механика материальной точки. Автор24 - интернет-биржа студенческих работ

На таких сверхвысоких скоростях с физическими вещами начинают происходить совершенно неожиданные и волшебные процессы, такие как замедления времени и релятивистское сокращение длины.

В пределах исследования релятивистской механики меняются формулировки некоторых устоявшихся в физике физических величин.

Данная формула, которую знает практически каждый человек, показывает, что масса является абсолютной мерой энергии тела, а также демонстрирует принципиальную вероятность перехода энергетического потенциала вещества в энергию излучения.

Основной закон релятивистской механики в виде материальной точки записывается так же, как и второй закон Ньютона : $F=\frac{dp}{dT}$.

Принцип относительности в релятивистской механике

Рисунок 2. Постулаты теории относительности Эйнштейна. Автор24 - интернет-биржа студенческих работ

Принцип относительности Эйнштейна подразумевает инвариантность всех существующих законов природы по отношению к постепенному переходу от одной инерциальной концепции отсчета к другой. Это означает, что все описывающие природные законы формулы должны быть полностью инвариантны относительно преобразований Лоренца. К моменту возникновения СТО теория, удовлетворяющая данному условию, уже была представлена классическая электродинамика Максвелла. Однако все уравнения ньютоновской механики оказались абсолютно неинвариантными относительно других научных постулатов, и поэтому СТО требовала пересмотра и уточнения механических закономерностей.

В основу такого важного пересмотра Эйнштейн озвучил требования выполнимости закона сохранения импульса и внутренней энергии, которые находятся в замкнутых системах. Для того, чтобы принципы нового учения выполнялся во всех инерциальных концепциях отсчета, оказалось важным и первостепенным изменить определение самого импульса физического тела.

Если принять и использовать такое определение, то закон сохранения конечного импульса взаимодействующих активных частиц (например, при внезапных соударениях) начнет выполняться во всех инерциальных системах, непосредственно связанных преобразованиями Лоренца. При $β → 0$ релятивистский внутренний импульс автоматически переходит в классический. Масса $m$, входящая в основное выражение для импульса, является фундаментальная характеристика мельчайшей частицы, не зависящая от дальнейшего выбора концепции отсчета, а, следовательно, и от коэффициента ее движения.

Релятивистский импульс

Рисунок 3. Релятивистский импульс. Автор24 - интернет-биржа студенческих работ

Релятивистский импульс не пропорционален начальной скорости частицы, а его изменения не зависят от возможного ускорения взаимодействующих в инерциальной системе отчета элементов. Поэтому постоянная по направлению и модулю сила не вызывает прямолинейного равноускоренного движения. Например, в случае одномерного и плавного движения вдоль центральной оси x ускорение всех частицы под воздействием постоянной силы оказывается равным:

$a= \frac{F}{m}(1-\frac{v^2}{c^2})\frac{3}{2}$

Если скорость определенной классической частицы беспредельно увеличивается под действием стабильной силы, то скорость релятивистского вещества не может в итог превысить скорость света в абсолютной пустоте. В релятивистской механике, так же, как и в законах Ньютона, выполняется и реализуется закон сохранения энергии. Кинетическая энергия материального тела $Ek$ определяется через внешнюю работу силы, необходимую для сообщения в будущем заданной скорости. Чтобы разогнать элементарную частицу массы m из состояния покоя до скорости под влиянием постоянного параметра $F$, эта сила обязана совершить работу.

Чрезвычайно важный и полезный вывод релятивистской механики состоит в том, что находящаяся в постоянном покое масса $m$ содержит невероятный запас энергии. Это утверждение имеет различные практические применения, включая сферу ядерной энергии. Если масса любой частицы или системы элементов уменьшилась в несколько раз, то при этом должна выделиться энергия, равная $\Delta E = \Delta m c^2. $

Многочисленные прямые исследования предоставляют убедительные факты существования энергии покоя. Первое экспериментальное доказательства правильности соотношения Эйнштейна, которое связывает объем и массу, было получено при сравнении внутренней энергии, высвобождающейся при мгновенном радиоактивном распаде, с разностью коэффициентов конечных продуктов и исходного ядра.

Масса и энергия в релятивистской механике

Рисунок 4. Импульс и энергия в релятивистской механике. Автор24 - интернет-биржа студенческих работ

В классической механике масса тела не зависит от скорости движения. А в релятивистской она растёт с увеличением скорости. Это видно из формулы: $m=\frac{m_0}{√1-\frac{v^2}{c^2}}$.

  • $m_0$– масса материального тела в спокойном состоянии;
  • $m$ – масса физического тела в той инерциальной концепции отсчёта, относительно которой оно движется со скоростью $v$;
  • $с$ – скорость света в вакууме.

Отличие масс становится видным только при больших скоростях, приближающихся к скорости света.

Кинетическая энергия при конкретных скоростях, приближающихся к световой скорости, исчисляется как некая разность между кинетической энергией движущегося тела и кинетической энергией тела, находящегося в состоянии покоя:

$T=\frac{mc^2}{√1-\frac{v^2}{c^2}}$.

При скоростях, значительно меньших скорости света, это выражение переходит в формулу кинетической энергии классической механики: $T=\frac{1}{2mv^2}$.

Скорость света является всегда граничным значением. Быстрее света в принципе не может двигаться ни одно физическое тело.

Многие задачи и проблемы смогло бы решить человечество, если бы ученым удалось разработать универсальные аппараты, способные передвигаться со скоростью, приближающейся к скорости света. Пока же люди могут о таком чуде только мечтать. Но когда-нибудь полёт в космос или на другие планеты с релятивистской скоростью станет не вымыслом, а реальностью.