Генетическая связь между оксидами. Генетическая связь между классами органических и неорганических веществ — Гипермаркет знаний

Генетическая связь – это связь между веществами, которые относятся к разным классам.

Основные признаки генетических рядов:

1. Все вещества одного ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам химических веществ.

3. Вещества, образующие генетический ряд элемента, должны быть связаны между собой взаимопревращениями.

Таким образом, генетическим называют ряд веществ, которые представляют разные классы неорганических соединений, являются соединениями одного и того же химического элемента, связаны взаимопревращениями и отражают общность происхождения этих веществ.

Для металлов выделяют три ряда генетически связанных веществ, для неметаллов - один ряд.


1. Генетический ряд металлов, гидроксиды которых являются основаниями (щелочами):

металл основный оксид основание (щелочь) соль.

Например, генетический ряд кальция:

Ca → CaO → Ca(OH) 2 → CaCl 2

2. Генетический ряд металлов, которые образуют амфотерные гидроксиды:

соль

металл амфотерный оксид (соль) амфотерный гидроксид

Например: ZnCl 2

Zn → ZnO → ZnSO 4 → Zn(OH) 2
(H 2 ZnO 2)
Na 2 ZnO 2

Оксид цинка с водой не взаимодействует, поэтому из него сначала получают соль, а затем гидроксид цинка. Так же поступают, если металлу соответствует нерастворимое основание.

3. Генетический ряд неметаллов (неметаллы образуют только кислотные оксиды):

неметалл кислотный оксид кислота соль

Например, генетический ряд фосфора:

P → P 2 O 5 → H 3 PO 4 → K 3 PO 4

Переход от одного вещества к другому осуществляется с помощью химических реакций.

Между простыми веществами, оксидами, основаниями, кислотами и солями существует генетическая связь, а именно – возможность их взаимного перехода (превращения).

Например, простое вещество – кальций в результате взаимодействия с кислородом превращается в оксид: 2Ca+O 2 = 2CaO.

Оксид кальция при взаимодействии с водой образует гидроксид кальция CaO+H 2 O=Ca(OH) 2, а последний при взаимодействии с кислотой превращается в соль:Ca(OH) 2 +H 2 SO 4 =CaSO 4 + 2H 2 O.

Эти превращения можно представить схемой:

Ca→ CaO→ Ca(OH) 2 →CaSO 4

Подобную схему можно записать и для неметалла, например, серы:

S→SO 3 →H 2 SO 4 →CaSO 4

Итак, различными путями получена одна и та же соль.

Возможен и обратный переход от соли к другим классам неорганических соединений и простым веществам:

CuSO 4 →Cu(OH) 2 →CuO→Cu

CuSO 4 + 2NaOН = Cu(OH) 2 ↓+ Na 2 SO 4

Cu(OH) 2 =CuO+H 2 О

CuO+H 2 =Cu+H 2 O(восстановление меди)

Подобная связь между классами неорганических соединений, основанная на получении веществ одного класса из веществ другого, называется генетической.

Свойства сложных соединений отражает генетическая схема основных классов неорганических соединений (см. рисунок). Она отражает ступени развития неорганического вещества по двум основным линиям – от типичных металлов до типичных неметаллов, обладающих противоположными свойствами.

Металлы, химическим свойством атома которых является способность отдавать электроны, и неметаллы, главным химическим свойством которых является способность их атомов присоединять электроны, противоположные друг другу по свойствам. При усложнении состава веществ эти противоположные тенденции продолжают проявляться.

Типичные металлы и переходные элементы в низшей степени окисления образуют основные оксиды, а типичные неметаллы и переходные элементы в высокой степени окисления образуют противоположные по свойствам кислотные оксиды.

Простые вещества

Амфотерные

Неметаллы

Основные оксиды

Амфотерные

Кислотные

Основания

Амфотерные

гидроксиды

Генетическая схема основных классов неорганических соединений

При дальнейшем усложнении состава веществ образуются гидроксиды, причем основным оксидам соответствуют основания, а кислотным оксидам соответствуют кислоты. Противоположные по свойствам основания и кислоты активно реагируют между собой, образуя соли. Взаимодействие противоположностей является движущей силой реакции. Поэтому основной и кислотный оксиды, основания и кислоты активно взаимодействуют друг с другом, а два кислотных оксида или два основных оксида не взаимодействуют, так как свойства у них близки.

Таким образом, свойства сложного соединения определяются на основе свойств образующего его элементов. Основные закономерности изменения этих свойств обобщены в следующих приложениях (табл. 6).

1. В периодах с увеличением порядкового номера свойства элементов изменяются от металлических к неметаллическим. Увеличивается число электронов на внешнем уровне, возрастает степень окисления элемента, уменьшается радиус атома и иона, увеличивается энергия ионизации и сродство к электрону. В соответствии с этим уменьшаются основные и увеличиваются кислотные свойства оксидов и гидроксидов.

2. В главных подгруппах с увеличением порядкового номера элемента увеличиваются основные свойства оксидов и гидроксидов. Для элементов побочных подгрупп с увеличением порядкового номера характерно более сложное изменение свойств. Сначала металлические свойства усиливаются, а затем уменьшаются.

3. Активным металлам соответствуют оксиды и гидроксиды с сильно выраженными основными свойствами. Самые активные металлы – щелочные и щелочно-земельные. Они образуют растворимые в воде оксиды и сильные растворимые основания – щелочи.

4. Малоактивные металлы (все, кроме щелочных и щелочно-земельных) образуют слабые основания, трудно растворимые в воде:

Cu(OH) 2 ,Fe(OH) 3 .

5. Активным неметаллам соответствуют оксиды и гидроксиды с сильно выраженными кислотными свойствами.

6. Амфотерные металлы образуют амфотерные оксиды и гидроксиды.

7.Если элемент проявляет различные степени окисления, то ему соответствуют оксиды и гидроксиды с различными свойствами.

>> Химия: Генетическая связь между классами органических и неорганических веществ

Материальный мир. в котором мы живем и крохотной частичкой которого мы являемся, един и в то же время бесконечно разнообразен. Единство и многообразие химических веществ этого мира наиболее ярко проявляется в генетической связи веществ, которая отражается в так называемых генетических рядах. Выделим наиболее характерные признаки таких рядов:

1. Все вещества этого ряда должны быть образованы одним химическим элементом.

2. Вещества, образованные одним и тем же элементом, должны принадлежать к различным классам, то есть отражать разные формы его существования.

3. Вещества, образующие генетический ряд одного элемента, должны быть связаны взаимопревращениями. По этому признаку можно различать полные и неполные генетические ряды.

Обобщая сказанное выше, можно дать следующее определение генетического ряда:
Генетическим называют ряд веществ представителей разных классов, являющихся соединениями одною химического элемента, связанных взаимопревращениями и отражающих общность происхождения этих веществ или их генезис.

Генетическая связь - понятие более общее, чем генетический ряд. который является пусть и ярким, но частным проявлением этой связи, которая реализуется при любых взаимных превращениях веществ. Тогда, очевидно, под это определение подходит н первый прицеленный в тексте параграфа ряд веществ.

Для характеристики генетической связи неорганических веществ мы рассмотрим три разновидности генетических рядов:

II. Генетический ряд неметалла. Аналогично ряду металла более богат связями ряд неметалла с разными степенями окисления, например генетический ряд серы со степенями окисления +4 и +6.

Затруднение может вызвать лишь последний переход. Если вы выполняете задания такого типа, то руководствуйтесь правилом: чтобы получить простое вещество из окнелгнного соединения элементе, нужно взять для атой цели самое восстановленное его соединение, например летучее водородное соединение неметалла .

III. Генетический ряд металла, которому соответствуют амфотерные оксид и гндроксид, очень богат саязями. так как они проявляют в зависимости от условий то свойства кислоты, то свойства основания. Например, рассмотрим генетический ряд цинка:

В органической химии также следует различать более общее понятие - генетическая связь и более частное понятие генетический ря. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в кото-рый включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное урнпненне реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Иод определение генетического ряда не подходит последний переход - образуется продукт не с двумя, и с множеством углеродных атомов, но аато с его помощью наиболее многообразно представлены генетические связи. И наконец, приведем примеры генетической связи между классами органических и неорганических соединений, которые доказывают единство мира веществ, где нет деления на органические и неорганические вещества.

Воспользуемся возможностью повторить названия реакций, соответствующих предложенным переходам:
1. Обжиг известняка:

1. Запишите уравнения реакций, иллюстрирующих следующие переходы:

3. При взаимодействии 12 г предельного одноатомного спирта с натрием выделилось 2.24 л водорода (н. у.). Найдите молекулярную формулу спирта и запишите формулы возможных изомеров.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Дата___________

Урок № 61 Тема : Генетическая связь между простыми веществами, оксидами, основаниями, кислотами и солями. Нахождение и круговорот некоторых неорганических веществ в природе. Соленые озера в РК.

Цель: Систематизировать, обобщить и закрепить знания об основных классах неорганических веществ.

Задачи:

образовательные: закрепить понятия «генетический ряд», «генетическая связь»; научить составлять генетические ряды элементов (металлов и неметаллов), составлять уравнения реакций, соответствующих генетическому ряду; проверить, как усвоены знания о химических свойствах оксидов, кислот, солей, оснований;

развивающие: развивать умения анализировать, сравнивать, обобщать и делать выводы, составлять уравнения химических реакций;

воспитательные: содействовать формированию научного мировоззрения.

Тип урока: комбинированный.

Ход работы

1.Организационно- мотивационный этап.

Психологический настрой на урок.

Настроение бодрое рабочее у всех.

На уроке ждет нас радость и успех!

В каждом деле нам нужны терпение, удача.

И тогда получим мы знания в придачу!

2.Актуализация знаний.

Ребята мы с вами изучили 4 класса неорганических веществ.

Назовите классы.

А сейчас нам предстоит интересная работа.

Деление на группы.

По классам веществ: соли, оксиды, кислоты и основания.

Первое задание называется «Собери рюкзак»

План характеристики вещества:

1.Определение

2.Классификация

3.Примеры

А. Оксиды – это…

В. Кислоты – это…

С. Основания – это…

Д. Соли – это…

Второе задание «Водопад веществ»

Распределите вещества по классам

Al 2 O 3 , Mg(NO 3 ) 2 , H 2 SO 4 ,CO 2 , Ca(OH) 2 , Na 2 O, H 2 CO 3 , Mg, K 2 O, NaCl, KNO 3 , H 2 SiO 3 , MgO, Na 2 SO 4 ,N 2 O 5 , NaOH, Ca, ZnCl 2 , CaCO 3 , Cl 2 O 7 , HCL, AL(OH) 3 , C, ZnSO 4 , AL 2 (SO4) 3 , H 2 SO 3 , Mg(OH) 2 , SiO 2

Третье задание « В пещере колдунов »

Вместо пропусков вставьте формулы веществ и нужные коэффициенты

MgO + …….. = MgCl 2 + H 2 O

……..+ H 2 SO 4 = ZnSO 4 + H 2

NaOH + HCl = …….+ H 2 O

3.Изучение нового материала.

Генетические связи - это связи между разными классами, основанные на их взаимопревращениях.

Генетический ряд – ряд веществ – представителей разных классов, являющихся соединениями одного химического элемента, связанных взаимопревращениями и отражающих превращения данных веществ. В основу этих рядов положен один и тот же элемент.

Какие виды генетических рядов принято выделять?

Среди металлов можно выделить две разновидности рядов:

а) Генетический ряд, в котором в качестве основания выступает щёлочь. Этот ряд можно представить с помощью следующих превращений:

металл →основный оксид → щёлочь → соль

например, генетический ряд калия K → K 2 O → KOH→ KCl

б) Генетический ряд, где в качестве основания выступает нерастворимое основание, тогда ряд можно представить цепочкой превращений:

металл → основный оксид → соль→ нерастворимое основание →основный оксид → металл

например: Cu→ CuO → CuCl 2 → Cu(OH) 2 → CuO → Cu

Среди неметаллов также можно выделить две разновидности рядов:

а) Генетический ряд неметаллов, где в качестве звена ряда выступает растворимая кислота. Цепочку превращений можно представить в следующем виде: неметалл → кислотный оксид → растворимая кислота → соль.

Например: P→ P 2 O 5 → H 3 PO 4 →Na 3 PO 4

б) Генетический ряд неметаллов, где в качестве звена ряда выступает нерастворимая кислота: неметалл → кислотный оксид → соль→ кислота → кислотный оксид → неметалл

Например: Si SiO 2 → Na 2 SiO 3 → H 2 SiO 3 → SiO 2 → Si

Групповая работа.

Изучив дополнительный материал к уроку составить кластер соленые озера Казахстана.(10 мин)

Взаимообмен информацией 6 мин

Д\з

Из данных веществ составьте генетический ряд, используя все формулы. Напишите уравнения реакций, с помощью которых можно осуществить эту цепочку превращений:

I вариант: ZnSO 4, Zn , ZnO , Zn , Zn (OH ) 2

II вариант : Na 2 SO 4, NaOH , Na , Na 2 O

Итоги урока. Рефлексия.