Совместные и несовместные события теорема сложения вероятностей. Сложение и умножение вероятностей

Рассматривается эксперимент Е . Предполагается, что его можно проводить неоднократно. В результате эксперимента могут появляться различные события, составляющие некоторое множество F . Наблюдаемые события разделяются на три вида: достоверное, невозможное, случайное.

Достоверным называется событие, которое обязательно произойдет в результате проведения эксперимента Е . Обозначается Ω.

Невозможным называется событие, которое заведомо не произойдет в результате проведения эксперимента Е . Обозначается .

Случайным называется событие, которое может произойти или не произойти в результате эксперимента Е .

Дополнительным (противоположным) событию А называется событие, обозначаемое , которое происходит тогда и только тогда, когда не происходит событиеА .

Суммой (объединением) событий называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий (рисунок 3.1). Обозначения .

Рисунок 3.1

Произведением (пересечением) событий называется событие, происходящее тогда и только тогда, когда все данные события происходят вместе (одновременно) (рисунок 3.2). Обозначения . Очевидно, что события А и Внесовместны , если .

Рисунок 3.2

Полной группой событий называется множество событий, сумма которых есть достоверное событие:

Событие В называют частным случаем события А , если с появлением события В появляется и событие А . Говорят также, что событие В влечет событие А (Рисунок 3.3). Обозначение .

Рисунок 3.3

События А и В называются эквивалентными , если они происходят или не происходят совместно при проведении эксперимента Е . Обозначение . Очевидно, что, еслии.

Сложным событием называют наблюдаемое событие, выраженное через другие наблюдаемые в том же эксперименте события с помощью алгебраических операций.

Вероятность осуществления того или иного сложного события вычисляют с помощью формул сложения и умножения вероятностей.

Теорема сложения вероятностей

Следствия:

1) в случае, если события А и В несовместны, теорема сложения приобретает вид:

2) в случае трех слагаемых теорема сложения записывается в виде

3) сумма вероятностей взаимно противоположных событий равна 1:

Совокупность событий ,, …,называютполной группой событий , если

Сумма вероятностей событий, образующих полную группу, равна 1:

Вероятность появления события А при условии, что событие В произошло, называют условной вероятностью и обозначают или.

А и В зависимые события , если .

А и В независимые события , если .

Теорема умножения вероятностей

Следствия:

1) для независимых событий А и В

2) в общем случае для произведения трех событий теорема умножения вероятностей имеет вид:

Образцы решения задач

Пример 1 ‑ В электрическую цепь последовательно включены три элемента, работающие независимо друг от друга. Вероятности отказов первого, второго и третьего элементов соответственно равны ,,. Найти вероятность того, что тока в цепи не будет.

Решение

Первый способ.

Обозначим события: - в цепи произошел отказ соответственно первого, второго и третьего элементов.

Событие А – тока в цепи не будет (откажет хотя бы один из элементов, так как они включены последовательно).

Событие ‑ в цепи ток (работают три элемента), . Вероятность противоположных событий связана формулой (3.4). Событие представляет собой произведение трех событий, являющихся попарно независимыми. По теореме умножения вероятностей независимых событий получаем

Тогда вероятность искомого события .

Второй способ.

С учетом принятых ранее обозначений запишем искомое событие А – откажет хотя бы один из элементов:

Так как слагаемые, входящие в сумму, совместны, следует применить теорему сложения вероятностей в общем виде для случая трех слагаемых (3.3):

Ответ: 0,388.

Задачи для самостоятельного решения

1 В читальном зале имеется шесть учебников по теории вероятностей, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

2 В мешке смешаны нити, среди которых 30 % белых, а остальные –красные. Определить вероятности того, что вынутые наудачу две нити будут: одного цвета; разных цветов.

3 Устройство состоит из трех элементов, работающих независимо. Вероятности безотказной работы за определенный промежуток времени первого, второго и третьего элементов соответственно равны 0,6; 0,7; 0,8. Найти вероятности того, что за это время безотказно будут работать: только один элемент; только два элемента; все три элемента; хотя бы два элемента.

4 Брошены три игральные кости. Найти вероятности следующих событий:

а) на каждой грани из выпавших появится пять очков;

б) на всех выпавших гранях появится одинаковое число очков;

в) на двух выпавших гранях появится одно очко, а на третьей грани – другое число очков;

г) на всех выпавших гранях появится разное число очков.

5 Вероятность попадания в мишень стрелком при одном выстреле равна 0,8. Сколько выстрелов должен произвести стрелок, чтобы с вероятностью, меньшей 0,4, можно было ожидать, что не будет ни одного промаха?

6 Из цифр 1, 2, 3, 4, 5 сначала выбирается одна, а затем из оставшихся четырех – вторая цифра. Предполагается, что все 20 возможных исходов равновероятны. Найти вероятность того, что будет выбрана нечетная цифра: в первый раз; во второй раз; в оба раза.

7 Вероятность того, что в мужской обувной секции магазина очередной раз будет продана пара обуви 46-го размера, равна 0,01. Сколько должно быть продано пар обуви в магазине, чтобы с вероятностью, не меньшей 0,9, можно было ожидать, что будет продана хотя бы одна пара обуви 46-го размера?

8 В ящике 10 деталей, среди которых две нестандартные. Найти вероятность того, что в наудачу отобранных шести деталях окажется не более одной нестандартной.

9 Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие нестандартно, равна 0,1. Найти вероятность того, что:

а) из трех проверенных изделий только два окажутся нестандартными;

б) нестандартным окажется только четвертое по порядку проверенное изделие.

10 32 буквы русского алфавита написаны на карточках разрезной азбуки:

а) три карточки вынимают наугад одну за другой и укладывают на стол в порядке появления. Найти вероятность того, что получится слово «мир»;

б) извлеченные три карточки можно поменять местами произвольным образом. Какова вероятность того, что из них можно сложить слово «мир»?

11 Истребитель атакует бомбардировщик и дает по нему две независимые очереди. Вероятность сбить бомбардировщик первой очередью равна 0,2, а второй ‑ 0,3. Если бомбардировщик не сбит, он ведет по истребителю стрельбу из орудий кормовой установки и сбивает его с вероятностью 0,25. Найти вероятность того, что в результате воздушного боя сбит бомбардировщик или истребитель.

Домашнее задание

1 Формула полной вероятности. Формула Байеса.

2 Решить задачи

Задача 1 . Рабочий обслуживает три станка, работающих независимо друг от друга. Вероятность того, что в течение часа не потребует внимания рабочего первый станок, равна 0,9, второй – 0,8, третий – 0,85. Найти вероятность того, что в течение часа хотя бы один станок потребует внимания рабочего.

Задача 2 . Вычислительный центр, который должен производить непрерывную обработку поступающей информации, располагает двумя вычислительными устройствами. Известно, что каждое из них имеет вероятность отказа за некоторое время, равную 0,2. Требуется определить вероятность:

а) того, что откажет одно из устройств, а второе будет исправно;

б) безотказной работы каждого из устройств.

Задача 3 . Четыре охотника договорились стрелять по дичи в определенной последовательности: следующий охотник производит выстрел лишь в случае промаха предыдущего. Вероятность попадания для первого охотника равна 0,6, для второго – 0,7, для третьего – 0,8. Найти вероятность того, что будет произведено выстрелов:

г) четыре.

Задача 4 . Деталь проходит четыре операции обработки. Вероятность получения брака при первой операции равна 0,01, при второй – 0,02, при третьей – 0,03, при четвертой – 0,04. Найти вероятность получения детали без брака после четырех операций, предполагая, что события получения брака на отдельных операциях являются независимыми.

Сложение и умножение вероятностей. В этой статье речь пойдёт о решении задач по теории вероятностей. Ранее мы с вами уже разбирали некоторые простейшие задания, для их решения достаточно знать и понимать формулу (советую повторить).

Есть тины задачи немного сложнее, для их решения необходимо знать и понимать: правило сложения вероятностей, правило умножения вероятностей, понятия зависимые и независимые события, противоположные события, совместные и несовместные события. Не пугайтесь определений, все просто)). В этой статье мы с вами именно такие задачи и рассмотрим.

Немного важной и простой теории:

несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Классический пример: при бросании игральной кости (кубика) может выпасть только единица, либо только двойка, либо только тройка и т.д. Каждое из этих событий несовместно с другими и совершение одного из них исключает совершение другого (в одном испытании). Тоже самое с монетой — выпадение «орла» исключает возможность выпадение «решки».

Также это относится и к более сложным комбинациям. Например, горят две лампы освещения. Каждая из них может перегореть или не перегореть в течение какого-то времени. Существую варианты:

  1. Перегорает первая и перегорает вторя
  2. Перегорает первая и не перегорает вторая
  3. Не перегорает первая и перегорает вторая
  4. Не перегорает первая и перегорает вторая.

Все эти 4 варианта событий несовместны — они вместе произойти просто не могут и никакое из них с любым другим...

Определение: События называются совместными , если появление одного из них не исключает появление другого.

Пример: из колоды карт будет взята дама и из колоды карт будет взята карта пик. Рассматриваются два события. Данные события не исключают друг друга — можно вытащить даму пик и, таким образом, произойдут оба события.

О сумме вероятностей

Суммой двух событий А и В называется событие А+В, которое состоит в том, что наступит или событие А или событие В или оба одновременно.

Если происходят несовместные события А и В, то вероятность суммы данных событий равна сумме вероятностей событий:


Пример с игральной костью:

Бросаем игральную кость. Какова вероятность выпадения числа меньшего четырёх?

Числа меньшие четырёх это 1,2,3. Мы знаем, что вероятность выпадения единицы равна 1/6, двойки 1/6, тройки 1/6. Это несовместные события. Можем применить правило сложения. Вероятность выпадения числа меньшего четырёх равна:

Действительно, если исходить из понятия классической вероятности: то число всевозможных исходов равно 6 (число всех граней кубика), число благоприятных исходов равно 3 (выпадение единицы, двойки или тройки). Искомая вероятность равна 3 к 6 или 3/6 = 0,5.

*Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учёта их совместного появления: Р(А+В)=Р(А)+Р(В) -Р(АВ)

Об умножении вероятностей

Пусть происходят два несовместных события А и В, их вероятности соответственно равны Р(А) и Р(В). Произведением двух событий А и В называют такое событие А·В, которое состоит в том что эти события произойдут вместе, то есть произойдёт и событие А и событие В. Вероятность такого события равна произведению вероятностей событий А и В. Вычисляется по формуле:

Как вы уже заметили логическая связка «И» означает умножение.

Пример с той же игральной костью: Бросаем игральную кость два раза. Какова вероятность выпадения двух шестёрок?

Вероятность выпадения шестёрки первый раз равна 1/6. Во второй раз так же равна 1/6. Вероятность выпадения шестёрки и в первый раз и во второй раз равна произведению вероятностей:

Говоря простым языком: когда в одном испытании происходит некоторое событие, И далее происходит(ят) другое (другие), то вероятность того что они произойдут вместе равна произведению вероятностей этих событий.

Задачи с игральной костью мы решали, но пользовались только логическими рассуждениями, формулу произведения не использовали. В рассматриваемых же ниже задачах без формул не обойтись, вернее с ними будет получить результат проще и быстрее.

Стоит сказать ещё об одном нюансе. При рассуждениях в решении задач используется понятие ОДНОВРЕМЕННОСТЬ совершения событий. События происходят ОДНОВРЕМЕННО — это не означает, что они происходят в одну секунду (в один момент времени). Это значит, что они происходят в некоторый промежуток времени (при одном испытании).

Например:

Две лампы перегорают в течение года (может быть сказано — одновременно в течение года)

Два автомата ломаются в течении месяца (может быть сказано — одновременно в течение месяца)

Игральная кость бросается три раза (очки выпадают одновременно это означает при одном испытании)

Биатлонист делает пять выстрелов. События (выстрелы) происходят во время одного испытания.

События А и В являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события.

Рассмотрим задачи:

Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 35 % этих стекол, вторая –– 65%. Первая фабрика выпускает 4% бракованных стекол, а вторая –– 2%. Найдите вероятность того, что случайно купленное в магазине стекло окажется бракованным.

Первая фабрика выпускает 0,35 продукции (стёкол). Вероятность купить бракованное стекло с первой фабрики равна 0,04.

Вторая фабрика выпускает 0,65 стёкол. Вероятность купить бракованное стекло со второй фабрики равна 0,02.

Вероятность того, что стекло куплено на первой фабрике И при этом оно окажется бракованным равна 0,35∙0,04 = 0,0140.

Вероятность того, что стекло куплено на второй фабрике И при этом оно окажется бракованным равна 0,65∙0,02 = 0,0130.

Покупка в магазине бракованного стекла подразумевает, что оно (бракованное стекло) куплено ЛИБО с первой фабрики, ЛИБО со второй. Это несовместные события, то есть полученные вероятности складываем:

0,0140 + 0,0130 = 0,027

Ответ: 0,027

Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,62. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,2. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза.

Возможность выиграть первую и вторую партию не зависят друг от друга. Сказано, что гроссмейстер должен выиграть оба раза, то есть выиграть первый раз И при этом выиграть ещё и второй раз. В случае, когда независимые события должны произойти совместно вероятности этих событий перемножаются, то есть используется правило умножения.

Вероятность произведения указанных событий будет равна 0,62∙0,2 = 0,124.

Ответ: 0,124

На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,3. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,25. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

То есть необходимо найти вероятность того, что школьнику достанется вопрос ЛИБО по теме «Вписанная окружность», ЛИБО по теме «Параллелограмм». В данном случае вероятности суммируются, так как это события несовместные и произойти может любое из этих событий: 0,3 + 0,25 = 0,55.

*Несовместные события – это события, которые не могут произойти одновременно.

Ответ: 0,55

Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,9. Найдите вероятность того, что биатлонист первые четыре раза попал в мишени, а последний промахнулся. Результат округлите до сотых.

Поскольку биатлонист попадает в мишень с вероятностью 0,9, то он промахивается с вероятностью 1 – 0,9 = 0,1

*Промах и попадание это события, которые при одном выстреле не могут произойти одновременно, сумма вероятностей этих событий равна 1.

Речь идёт о совершении нескольких (независимых) событий. Если происходит событие и при этом происходит другое (последующие) в одно время (испытание), то вероятности этих событий перемножаются.

Вероятность произведения независимых событий равна произведению их вероятностей.

Таким образом, вероятность события «попал, попал, попал, попал, промахнулся» равна 0,9∙0,9∙0,9∙0,9∙0,1 = 0,06561.

Округляем до сотых, получаем 0,07

Ответ: 0,07

В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,07 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

Найдем вероятность того, что неисправны оба автомата.

Эти события независимые, значит вероятность будет равна произведению вероятностей этих событий: 0,07∙0,07 = 0,0049.

Значит, вероятность того, что исправны оба автомата или какой-то из них будет равна 1 – 0,0049 = 0,9951.

*Исправны оба и какой-то один полностью – отвечает условию «хотя бы один».

Можно представить вероятности всех (независимых) событий для проверки:

1. «неисправен-неисправен» 0,07∙0,07 = 0,0049

2. «исправен-неисправен» 0,93∙0,07 = 0,0651

3. «неисправен-исправен» 0,07∙0,93 = 0,0651

4. «исправен-исправен» 0,93∙0,93 = 0,8649

Чтобы определить вероятность того, что исправен хотя бы один автомат, необходимо сложить вероятности независимых событий 2,3 и 4: Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.

Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

Определение: События называются равновозможными , если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.

В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

В мы рассмотрим ещё задачи, где используется сумма и произведение вероятностей событий, не пропустите!

На этом всё. Успехов вам!

С уважением, Александр Крутицких.

Марья Ивановна ругает Васю:
— Петров, ты почему вчера не был в школе?!
— Мне мама вчера штаны постирала.
— Ну и что?
— А я шел мимо дома и увидел, что Ваши висят. Думал, не придете.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Пусть события А и В ― несовместные, причем вероятности этих событий известны. Вопрос: как найти вероятность того, что наступит одно из этих несовместных событий? На этот вопрос ответ дает теорема сложения.

Теорема. Вероятностьпоявления одного из двух несовместных событий равна сумме вероятностей этих событий:

p (А + В ) = p (А ) + p (В ) (1.6)

Доказательство. Действительно, пусть n – общее число всех равновозможных и несовместных (т.е. элементарных) исходов. Пусть событию А благоприятствует m 1 исходов, а событию В m 2 исходов. Тогда согласно классическому определению вероятности этих событий равны: p (А ) = m 1 / n , p (B ) = m 2 / n .

Так как события А и В несовместные, то ни один из исходов, благоприятствующих событию А , не благоприятствует событию В (см. схему ниже).

Поэтому событию А +В будут благоприятствовать m 1 + m 2 исходов. Следовательно, для вероятности p (А + В ) получим:

Следствие 1. Сумма вероятностей событий, образующих полную группу, равна единице:

p (А ) + p (В ) + p (С ) + … + p (D ) = 1.

Действительно, пусть события А , В , С , … , D образуют полную группу. В силу этого они являются несовместными и единственно возможными. Поэтому событие А + В + С + …+ D , состоящее в появлении (в результате испытания) хотя бы одного из этих событий, является достоверным, т.е. А+В+С+…+ D = и p (А+В+С+ …+ D ) = 1.

В силу несовместности событий А , В , С ,, D справедлива формула:

p (А+В+С+ …+ D ) = p (А ) + p (В ) + p (С ) + … + p (D ) = 1.

Пример. В урне 30 шаров, из них 10 красных, 5 синих и 15 белых. Найти вероятность извлечения красного или синего шара при условии, что из урны извлекли только один шар.

Решение. Пусть событие А 1 – извлечение красного шара, а событие А 2 – извлечение синего шара. Данные события несовместны, причём p (А 1) = 10 / 30 = 1 / 3; p (А 2) = 5 / 30 = 1 /6. По теореме сложения получим:

p (А 1 + А 2) = p (А 1) + p (А 2) = 1 / 3 + 1 / 6 = 1 / 2.

Замечание 1. Подчеркнём, что по смыслу задачи необходимо прежде всего установить характер рассматриваемых событий – являются ли они несовместными. Если приведённую теорему применять к совместным событиям, то результат получится неверным.

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

СЛОЖЕНИЕ И УМНОЖЕНИЕ ВЕРОЯТНОСТЕЙ. ПОВТОРНЫЕ НЕЗАВИСИМЫЕ ИСПЫТАНИЯ

Лекция для студентов землеустроительного факультета

заочной формы обучения

Горки, 2012

Сложение и умножение вероятностей. Повторные

независимые испытания

  1. Сложение вероятностей

Суммой двух совместных событий А и В называется событие С , состоящее в наступлении хотя бы одного из событий А или В . Аналогично суммой нескольких совместных событий называется событие, состоящее в наступлении хотя бы одного из этих событий.

Суммой двух несовместных событий А и В называется событие С , состоящее в наступлении или события А , или события В . Аналогично суммой нескольких несовместных событий называется событие, состоящее в наступлении какого-либо одного из этих событий.

Справедлива теорема сложения вероятностей несовместных событий: вероятность суммы двух несовместных событий равна сумме вероятностей этих событий , т.е. . Эту теорему можно распространить на любое конечное число несовместных событий.

Из данной теоремы следует:

сумма вероятностей событий, образующих полную группу, равна единице;

сумма вероятностей противоположных событий равна единице, т.е.
.

Пример 1 . В ящике находятся 2 белых, 3 красных и 5 синих шара. Шары перемешивают и наугад извлекают один. Какова вероятность того, что шар окажется цветным?

Решение . Обозначим события:

A ={извлечён цветной шар};

B ={извлечён белый шар};

C ={извлечён красный шар};

D ={извлечён синий шар}.

Тогда A = C + D . Так как события C , D несовместны, то воспользуемся теоремой сложения вероятностей несовместных событий: .

Пример 2 . В урне находятся 4 белых шара и 6 – чёрных. Из урны наугад вынимают 3 шара. Какова вероятность того, что все они одного цвета?

Решение . Обозначим события:

A ={вынуты шары одного цвета};

B ={вынуты шары белого цвета};

C ={вынуты шары чёрного цвета}.

Так как A = B + C и события В и С несовместны, то по теореме сложения вероятностей несовместных событий
. Вероятность события В равна
, где
4,

. Подставим k и n в формулу и получим
Аналогично найдём вероятность события С :
, где
,
, т.е.
. Тогда
.

Пример 3 . Из колоды в 36 карт наугад вынимают 4 карты. Найти вероятность того, что среди них окажется не менее трёх тузов.

Решение . Обозначим события:

A ={среди вынутых карт не менее трёх тузов};

B ={среди вынутых карт три туза};

C ={среди вынутых карт четыре туза}.

Так как A = B + C , а события В и С несовместны, то
. Найдём вероятности событий В и С :


,
. Следовательно, вероятность того, что среди вынутых карт не менее трёх тузов, равна

0.0022.

  1. Умножение вероятностей

Произведением двух событий А и В называется событие С , состоящее в совместном наступлении этих событий:
. Это определение распространяется на любое конечное число событий.

Два события называются независимыми , если вероятность наступления одного из них не зависит от того, произошло другое событие или нет. События , , … , называются независимыми в совокупности , если вероятность наступления каждого из них не зависит от того, произошли или не произошли другие события.

Пример 4 . Два стрелка стреляют по цели. Обозначим события:

A ={первый стрелок попал в цель};

B ={второй стрелок попал в цель}.

Очевидно, что вероятность попадания в цель первым стрелком не зависит от того, попал или не попал второй стрелок, и наоборот. Следовательно, события А и В независимы.

Справедлива теорема умножения вероятностей независимых событий: вероятность произведения двух независимых событий равна произведению вероятностей этих событий : .

Эта теорема справедлива и для n независимых в совокупности событий: .

Пример 5 . Два стрелка стреляют по одной цели. Вероятность попадания первого стрелка равна 0.9, а второго – 0.7. Оба стрелка одновременно делают по одному выстрелу. Определить вероятность того, что будут иметь место два попадания в цель.

Решение . Обозначим события:

A

B

C ={оба стрелка попадут в цель}.

Так как
, а события А и В независимы, то
, т.е. .

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло другое событие или нет. Вероятность наступления события А при условии, что событие В уже наступило, называется условной вероятностью и обозначается
или
.

Пример 6 . В урне находятся 4 белых и 7 чёрных шаров. Из урны извлекаются шары. Обозначим события:

A ={извлечён белый шар} ;

B ={извлечён чёрный шар}.

Перед началом извлечения шаров из урны
. Из урны извлекли один шар и он оказался чёрным. Тогда вероятность события А после наступления события В будет уже другой, равной . Это означает, что вероятность события А зависит от события В , т.е. эти события будут зависимыми.

Справедлива теорема умножения вероятностей зависимых событий: вероятность произведения двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило , т.е. или .

Пример 7 . В урне находятся 4 белых шара и 8 красных. Из неё наугад последовательно извлекают два шара. Найти вероятность того, что оба шара будут чёрными.

Решение . Обозначим события:

A ={первым извлечён чёрный шар};

B ={вторым извлечён чёрный шар}.

События А и В зависимы, так как
, а
. Тогда
.

Пример 8 . Три стрелка стреляют по цели независимо друг от друга. Вероятность попадания в цель для первого стрелка равна 0.5, для второго – 0.6 и для третьего – 0.8. Найти вероятность того, что произойдут два попадания в цель, если каждый стрелок сделает по одному выстрелу.

Решение . Обозначим события:

A ={произойдут два попадания в цель};

B ={первый стрелок попадёт в цель};

C ={второй стрелок попадёт в цель};

D ={третий стрелок попадёт в цель};

={первый стрелок не попадёт в цель};

={второй стрелок не попадёт в цель};

={третий стрелок не попадёт в цель}.

По условию примера
,
,
,

,
,
. Так как , то используя теорему сложения вероятностей несовместных событий и теорему умножения вероятностей независимых событий, получим:

Пусть события
образуют полную группу событий некоторого испытания, а событии А может наступить только с одним из этих событий. Если известны вероятности и условные вероятности события А , то вероятность события А вычисляется по формуле:

Или
. Эта формула называется формулой полной вероятности , а события
гипотезами .

Пример 9 . На сборочный конвейер поступает 700 деталей с первого станка и 300 деталей со второго. Первый станок даёт 0.5% брака, а второй – 0.7%. Найти вероятность того, что взятая деталь будет бракованной.

Решение . Обозначим события:

A ={взятая деталь будет бракованной};

={деталь изготовлена на первом станке};

={деталь изготовлена на втором станке}.

Вероятность того, что деталь изготовлена на первом станке, равна
. Для второго станка
. По условию вероятность получения бракованной детали, изготовленной на первом станке, равна
. Для второго станка эта вероятность равна
. Тогда вероятность того, что взятая деталь будет бракованной, вычисляется по формуле полной вероятности

Если известно, что в результате испытания наступило некоторое событие А , то вероятность того, что это событие наступило с гипотезой
, равна
, где
- полная вероятность события А . Эта формула называется формулой Байеса и позволяет вычислять вероятности событий
после того, как стало известно, что событие А уже наступило.

Пример 10 . Однотипные детали к автомобилям производятся на двух заводах и поступают в магазин. Первый завод производит 80% общего количества деталей, а второй – 20%. Продукция первого завода содержит 90% стандартных деталей, а второго – 95%. Покупатель купил одну деталь и она оказалась стандартной. Найти вероятность того, что эта деталь изготовлена на втором заводе.

Решение . Обозначим события:

A ={куплена стандартная деталь};

={деталь изготовлена на первом заводе};

={деталь изготовлена на втором заводе}.

По условию примера
,
,
и
. Вычислим полную вероятность события А : 0.91. Вероятность того, что деталь изготовлена на втором заводе, вычислим по формуле Байеса:

.

Задания для самостоятельной работы

    Вероятность попадания в цель для первого стрелка равна 0.8, для второго – 0.7 и для третьего – 0.9. Стрелки произвели по одному выстрелу. Найти вероятность того, что имеет место не менее двух попаданий в цель.

    В ремонтную мастерскую поступило 15 тракторов. Известно, что 6 из них нуждаются в замене двигателя, а остальные – в замене отдельных узлов. Случайным образом отбираются три трактора. Найти вероятность того, что замена двигателя необходима не более, чем двум отобранным тракторам.

    На железобетонном заводе изготавливают панели, 80% из которых – высшего качества. Найти вероятность того, что из трёх наугад выбранных панелей не менее двух будут высшего сорта.

    Три рабочих собирают подшипники. Вероятность того, что подшипник, собранный первым рабочим, высшего качества, равна 0.7, вторым – 0.8 и третьим – 0.6. Для контроля наугад взято по одному подшипнику из собранных каждым рабочим. Найти вероятность того, что не менее двух из них будут высшего качества.

    Вероятность выигрыша по лотерейному билету первого выпуска равна 0.2, второго – 0.3 и третьего – 0.25. Имеются по одному билету каждого выпуска. Найти вероятность того, что выиграет не менее двух билетов.

    Бухгалтер выполняет расчёты, пользуясь тремя справочниками. Вероятность того, что интересующие его данные находятся в первом справочнике, равна 0.6, во втором – 0.7 ив третьем – 0.8. Найти вероятность того, что интересующие бухгалтера данные содержатся не более, чем в двух справочниках.

    Три автомата изготавливают детали. Первый автомат изготавливает деталь высшего качества с вероятностью 0.9, второй – с вероятностью 0.7 и третий – с вероятностью 0.6. Наугад берут по одной детали с каждого автомата. Найти вероятность того, что среди них не менее двух высшего качества.

    На двух станках обрабатываются однотипные детали. Вероятность изготовления нестандартной детали для первого станка равна 0.03, в для второго – 0.02. Обработанные детали складываются в одном месте. Среди них 67% с первого станка, а остальные – со второго. Наугад взятая деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

    В мастерскую поступили две коробки однотипных конденсаторов. В первой коробке было 20 конденсаторов, из которых 2 неисправных. Во второй коробки 10 конденсаторов, из которых 3 неисправных. Конденсаторы были переложены в один ящик. Найти вероятность того, что наугад взятый из ящика конденсатор окажется исправным.

    На трёх станках изготавливают однотипные детали, которые поступают на общий конвейер. Среди всех деталей 20% с первого автомата, 30% - со второго и 505 – с третьего. Вероятность изготовления стандартной детали на первом станке равна 0.8, на втором – 0.6 и на третьем – 0.7. Взятая деталь оказалась стандартной. Найти вероятность того, эта деталь изготовлена на третьем станке.

    Комплектовщик получает для сборки 40% деталей с завода А , а остальные – с завода В . Вероятность того, что деталь с завода А – высшего качества, равна 0.8, а с завода В – 0.9. Комплектовщик наугад взял одну деталь и она оказалась не высшего качества. Найти вероятность того, что эта деталь с завода В .

    Для участия в студенческих спортивных соревнованиях выделено 10 студентов из первой группы и 8 – из второй. Вероятность того, что студент из первой группы попадёт в сборную академии, равна 0.8, а со второй – 0.7. Наугад выбранный студент попал в сборную. Найти вероятность того, что он из первой группы.

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей . Решение простейших задач на определение вероятности с использованием сложения вероятностей.

Методические указания по теме 3.1:

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей:

Изучение каждого явления в порядке наблюдения или производства опыта связан с осуществлением некоторого комплекса условий (испытаний). Всякий результат или исход испытания называется событием.

Если событие при заданных условиях может произойти или не произойти, то оно называется случайным. В том случае, когда событие должно непременно произойти, его называют достоверным , а в том случае, когда оно заведомо не может произойти, - невозможным.

События называются несовместными, если каждый раз возможно появление только одного из них. События называются совместными, если в данных условиях появление одного из этих событий не исключает появление другого при том же испытании.

События называются противоположными, если в условиях испытания они, являясь единственными его исходами, несовместны.

Вероятность события рассматривается как мера объективной возможности появления случайного события.

Вероятностью события называется отношение числа исходов m , благоприятствующих наступлению данного события , к числу n всех исходов (несовместных, единственно возможных и равновозможных), т.е.

Вероятность любого события не может быть меньше нуля и больше единицы, т.е. . Невозможному событию соответствует вероятность , а достоверному - вероятность

Пример 1. В лотерее из 1000 билетов имеются 200 выигрышных. Вынимают наугад один билет. Чему равна вероятность того, что этот билет выигрышный?

Общее число различных исходов есть n = 1000. Число исходов, благоприятствующих получению выигрыша, составляет m = 200. Согласно формуле, получим .

Пример 2. Из урны, в которой находятся 5 белых и 3 черных шара, вынимают один шар. Найти вероятность того, что шар окажется черным.

Обозначим событие, состоящее в появлении черного шара, через . Общее число случаев . Число случаев m , благоприятствующих появлению события , равно 3. По формуле получим .

Пример 3. Из урны, в которой находятся 12 белых и 8 черных шаров, вынимают наудачу два шара. Какова вероятность того, что оба шара окажутся черными?

Обозначим событие, состоящее в появлении двух черных шаров через . Общее число возможных случаев n равно числу сочетаний из 20 элементов (12 + 8) по два:

Число случаев m , благоприятствующих событию , составляет


По формуле находим вероятность появления двух черных шаров:

Теорема сложения вероятностей. Решение простейших задач на определение вероятности с использованием теоремы сложения вероятностей:

Теорема сложения вероятностей несовместных событий. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равно сумме вероятностей этих событий:

Теорема сложения вероятностей совместных событий. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

Пример 4. В ящике в случайном порядке разложены 20 деталей, причем пять из них стандартные. Рабочий берет наудачу три детали. Найти вероятность того, что по крайней мере она из взятых деталей окажется стандартной.

Очевидно, что по крайней мере одна из взятых деталей окажется стандартной, если произойдет любое из трех несовместных событий: B - одна деталь стандартная, две нестандартные; C - две детали стандартные, одна нестандартная и D - три детали стандартные.

Таким образом, событие A можно представить в виде суммы этих трех событий: A = B + C + D. По теореме сложения имеем P(A) = P(B) + P(C) + P(D). Находим вероятность каждого из этих событий:

Сложив найденные величины, получим

Пример 5. Найти вероятность того, что наудачу взятое двузначное число окажется кратным либо 3, либо 5, либо тому и другому одновременно.

Пусть A - событие, состоящее в том, что наудачу взятое число кратно 3, а B - в том, что оно кратно 5. Найдем Так как A и B совместные события, то воспользуемся формулой:

Всего имеется 90 двузначных чисел: 10, 11, 98, 99. Из них 30 являются кратными 3 (благоприятствуют наступлению события A ); 18 - кратными 5 (благоприятствуют наступлению события B ) и 6 - кратными одновременно 3 и 5 (благоприятствуют наступлению события AB ). Таким образом, т.е.

Теорема умножения вероятностей:

Теорема умножения вероятностей независимых событий. Вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий:

Вероятность появления нескольких событий, независимых в совокупности, вычисляется по формуле:

Теорема умножения вероятностей зависимых событий. Вероятность совместного появления двух зависимых событий равна произведению одного из них на условную вероятность второго:

Пример 6. В одной урне находятся 4 белых и 8 черных шаров, в другой - 3 белых и 9 черных. Из каждой урны вынули по шару. Найти вероятность того, что оба шара окажутся белыми.

Пусть - появление белого шара из первой урны, а - появление белого шара из второй урны. Очевидно, что события и независимы. Найдем

По формуле получим:

Вопросы для самопроверки по теме 3.1:

1. Что такое событие?

2. Какие события называются достоверными?

3. Какие события называются невозможными?

4. Дать определение вероятности.

5. Сформулировать теорему сложения вероятностей.

6. Сформулировать теорему умножения вероятностей.

Задания для самостоятельного решения по теме 3.1:

1. В ящике в случайном порядке положены 10 деталей, из которых 4 стандартных. Контролер взял наудачу 3 детали. Найти вероятность того, что хотя бы одна из взятых деталей оказалась стандартной.

2. В урне находятся 10 белых, 15 черных, 20 синих и 25 красных шаров. Найдите вероятность того, что вынутый шар окажется: 1) белым; 2) черным или красным.

3. Найдите вероятность того, что наудачу взятое двузначное число окажется кратным либо 4, либо 5, либо тому и другому одновременно.

4. Рабочий обслуживает два автомата, работающих независимо друг от друга. Вероятность того, что в течение часа первый автомат не потребует внимания рабочего, равна 0,8, а для второго автомата эта вероятность равна0,7. Найдите вероятность того, что в течение часа ни один и автоматов не потребует внимания рабочего.

5. В урне находятся 6 шаров, из которых 3 белых. Наудачу вынуты один за другим два шара. Вычислите вероятность того, что оба шара окажутся белыми.

6. В урне находятся 10 белых и 6 черных шаров. Найдите вероятность того, что три наудачу вынутых один за другим шара окажутся черными.