Модель и метод моделирования в научном исследовании. Моделирование как метод исследования Моделирование как метод

Модель - формализованное представление реального объекта, процесса или явления, выраженное различными средствами: математическим соотношением, числами, текстами, графиками, рисунками, словесным описанием, материальным объектом. Модель должна отражать существенные особенности изучаемого объекта, явления или процесса.

Моделирование – это метод познания, состоящий в создании и исследовании моделей.

Цели моделирования:

1. Понять сущность изучаемого объекта;

2. Научиться управлять объектом и определять наилучшие способы управления;

3. Прогнозировать прямые или косвенные последствия;

4. Решать прикладные задачи.

2. Классификация и формы представления моделей

В зависимости от поставленной задачи, способа создания модели и предметной области различают множество типов моделей:

· По области использования выделяют учебные, опытные, игровые, имитационные, научно-исследовательские модели.

· По временному фактору выделяют статические и динамические модели.

· По форме представления модели бывают математические, геометрические, словесные, логические, специальные (ноты, химические формулы и т.п.).

· По способу представления модели делят на информационные (нематериальные, абстрактные) и материальные. Информационные модели, в свою очередь, делят на знаковые и вербальные, знаковые – на компьютерные и некомпьютерные.

Информационная модель – это совокупность информации, характеризующая свойства и состояние объекта, процесса или явления.

Вербальная модель - информационная модель в мысленной или разговорной форме.

Знаковая модель - информационная модель, выраженная специальными знаками, то есть средствами любого формального языка.

Математическая модель – система математических соотношений, описывающих процесс или явление.

Компьютерная модель - математическая модель, выраженная средствами программной среды.

Опытные модели это уменьшенные или увеличенные копии проектируемого объекта. Их называют также натурными и используют для исследования объекта и прогнозирования его будущих характеристик.

Научно-технические модели создают для исследования процессов и явлений.

Имитационные модели не просто отражают реальность с той или иной степенью точности, а имитируют ее. Эксперимент либо много­кратно повторяется, чтобы изучить и оценить последствия каких-либо действий на реальную обстановку, либо проводится одновременно со многими другими похожими объектами, но поставленными в разные условия. Подобный метод выбора правильного решения называется методом проб и ошибок.

Статическая модель это как бы одномоментный срез информации по объекту.

Динамическая модель позволяет увидеть изменения объекта во вре­мени.

Как видно из примеров, один и тот же объект, возможно, изучать, применяя и статическую и динамическую модели.

Материальные модели иначе можно назвать предметными, физическими. Они воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение.

Информационные модели нельзя потрогать или увидеть воочию, они не имеют материального воплощения, потому что они строятся только на информации. В основе этого метода моделирования лежит информационный подход к изучению окружающей действительности.

Лекция 11_1. "Моделирование как метод познания"

Нас окружает необычайно интересный и сложный мир, познавать который человек начинает с ранних лет.

Детские игрушки похожи на объекты, окружающего мира: людей, животных, автомобили, здания и т. п.

Играя в различные игры, дети воспроизводят отношения, которые складываются в обществе («дочки-матери», «космонавты», «больница» и т. п.)

В школе на уроках в качестве наглядных пособий используются различные макеты, муляжи, карты, схемы, таблицы. Все это служит для изучения тех объектов, явлений и процессов, которые сложно или невозможно изучить непосредственно.

В своей профессиональной деятельности – научной, практической, художественной – человек также использует модели, т.е. создает образ того объекта (процесса или явления), с которым ему приходится иметь дело.

К созданию моделей прибегают, когда исследуемый объект либо очень велик (модель Солнечной системы), либо очень мал (модель атома), когда процесс протекает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели), исследование объекта может привести к его разрушению (модель самолета) или создание объекта очень дорого (архитектурный макет города) и т.д.

Таким образом, создание и исследование моделей является неотъемлемым элементом любой целенаправленной деятельности.

Модели позволяют представить в наглядной форме объекты и процессы , недоступные для непосредственного восприятия.

Строгие правила построения моделей сформулировать невозможно, однако человечество накопило богатый опыт моделирования различных объектов и процессов.

Что же такое модель ?

В реальной жизни этот термин имеет множество значений:

Модель (фр. modele , ит. modello , лат. modulus - мера, образец ) - это :

    некоторое упрощенное подобие реального объекта;

    воспроизведение предмета в уменьшенном или увеличенном виде (макет);

    схема, изображение или описание какого-либо явления или процесса в природе и обществе;

    физический или информационный аналог объекта , функционирование которого по определенным параметрам подобно функционированию реального объекта;

    новый объект (реальный, информационный или воображаемый), отличный от исходного, который обладает существенными для целей моделирования свойствами и в рамках этих целей полностью заменяет исходный объект.

Наглядные модели часто используются в процессе обучения . Например, в курсе географии первые представления о нашей планете Земля мы получаем, изучая ее модель - глобус.

Модели играют чрезвычайно важную роль в проектировании и создании различных технических устройств, машин и механизмов, зданий, электрических цепей и т. д. Без предварительного создания чертежа невозможно изготовить даже простую деталь, не говоря уже о сложном механизме.

В процессе проектирования зданий и сооружений кроме чертежей часто изготавливают макеты. В процессе разработки летательных аппаратов поведение их моделей в воздушных потоках исследуют в аэродинамической трубе.

Развитие науки невозможно без создания теоретических моделей (теорий, законов, гипотез), отражающих строение, свойства и поведение реальных объектов. Создание новых теоретических моделей иногда коренным образом меняет представление человечества об окружающем мире (гелиоцентрическая система мира Коперника, модель атома Резерфорда-Бора, модель расширяющейся Вселенной, модель генома человека).

Все художественное творчество фактически является процессом создания моделей. Например, такой литературный жанр, как басня, переносит реальные отношения между людьми на отношения между животными и фактически создает модели человеческих отношений.

Лебедь, щука и рак

Когда в товарищах согласья нет,
На лад их дело не пойдёт,
И выйдет из него не дело, только мука.
Однажды, Лебедь, Рак и Щука
Везти с поклажей воз взялись,
И вместе трое все в него впряглись;
Из кожи лезут вон, а возу всё нет ходу!
Поклажа бы для них казалась и легка:
Да Лебедь рвётся в облака,
Рак пятится назад, а Щука тянет в воду.
Кто виноват из них, кто прав, - судить не нам;
Да только воз и ныне там.

Какие человеческие отношения смоделировал Крылов, переложив отношения между людьми на животных?

Практически любое литературное произведение может рассматриваться как модель реальной человеческой жизни. Моделями, в художественной форме отражающими реальную действительность, являются также живописные полотна, скульптуры, театральные постановки и т.д.

Моделями могут служить не только реальные объекты, но и «абстрактные, идеальные построения. Типичным примером служат математические модели. В результате деятельности математиков, логиков и философов, занимающихся исследованием оснований математики, была создана теория моделей.

Вероятно, первыми моделями, которые замещали реальные объекты, были языковые знаки. Они возникли в ходе развития человечества и постепенно превратились в разговорный язык. Первые наскальные рисунки (петроглифы), имеющие возраст в 200 тысяч лет, были графическими моделями, которые изображали бытовые сцены, животных и сцены охоты. Следующим этапом развития моделирования можно считать возникновение систем счисления и числовых знаков.

Моделирование получило развитие ещё в Древней Греции. В V-III вв. до н. э Птолемей создал геометрическую модель Солнечной системы, а Гиппократ использовал для изучения строения глаза человек глаз быка (как физическую модель глаза).

Цель моделирования


Рассмотрим несколько примеров моделей, созданных с разной целью:

· тренажер, для обучения управлением самолетом;

· манекен для примерки одежды;

· план Московского Кремля

· таблица Менделеева.

Попробуйте сами определить, для какой цели была создана каждая из перечисленных моделей, и кому она может быть полезна?

Как видно из примеров, человек создает модели объектов, которые позволяют решать самые разнообразные задачи:

· создание объектов с заданными свойствами;

· объяснение известных фактов;

· построение гипотез;

· получение новых знаний об исследуемых объектах;

· прогнозирования;

· управления и пр.

Разные науки исследуют объекты и процессы под разными углами зрения и строят различные типы моделей. В физике изучаются процессы взаимодействия и изменения объектов, в химии - их химический состав, в биологии ­ строение и поведение живых организмов и так далее.

Каждый объект имеет большое количество различных свойств . Никакая модель не может заменить сам объект. Но при решении конкретной задачи, когда нас интересует определенное свойство изучаемого объекта, модель оказывается полезным, а подчас и единственным инструментом исследования.

В процессе построения модели выделяются главные, наиболее существенные для проводимого исследования свойства.

Например : В процессе исследования аэродинамических качеств модели самолета в аэродинамической трубе важно, чтобы модель имела геометрическое подобие оригинала, но не важен, например, ее цвет.

Разные науки исследуют объекты и процессы под разными углами зрения и строят различные типы моделей. В физике изучаются процессы взаимодействия и изменения объектов, в химии - их химический состав, в биологии - строение и поведение живых организмов и так далее.

Возьмем в качестве примера человека: в разных науках он исследуется в рамках различных моделей. В рамках механики его можно рассматривать как материальную точку, в химии - как объект, состоящий из различных химических веществ, в биологии - как систему, стремящуюся к самосохранению.

Таким образом, можно сказать, что основная цель моделирования - это изучение и исследование объекта или явления, для которого модель построена.

Достоинствами метода моделирования являются:

    Универсальность;

    Небольшая стоимость;

    Меньшая продолжительность во времени (например, для экономических моделей).

Недостатками являются:

    Трудности построения адекватной модели;

    сбор большого количества достоверной информации.

Термин «адекватность» (происходит от лат. adaequatus - «приравненный, равный») означает верное воспроизведение в модели связей и отношений объективного мира. Этим термином характеризуется качество созданной модели.

От модели не требуется достоверности - в этом случае получится не модель, а копия. Степень соответствия определяется целями моделирования. Излишнее сходство с оригиналом столь же бесполезно, как и недостаточное.

Например, детские игрушки - это модели реальных объектов. Уровень соответствия зависит от возраста ребенка. Игрушки для маленьких детей обычно моделируют только форму объекта. Например, модель автомобиля для ребенка трех-четырех лет адекватна, если она имеет кузов, кабину, четыре вращающихся колеса и сохраняет пропорции реальной машины. В более сложных игрушках моделируется взаимодействие между элементами исходного объекта: открываются двери и капот, работают элементы рулевого управления.

Адекватность теоретических моделей законам реального мира проверяется с помощью опытов и экспериментов.

С другой стороны, разные объекты могут описываться одной моделью. Так, в механике различные материальные тела (от планеты до песчинки) могут рассматриваться как материальные точки.

Домашнее задание - конспект

Основные понятия об экономической системе

Система – это строго упорядоченная совокупность взаимосвязанных, взаимодействующих и взаимозависимых элементов и их частей, которые совместно обуславливают протекание определенно направленных процессов и явлений. При этом элементом называется такая составная часть системы, которая не подлежит дальнейшему членению.

Свойства систем:

1) целостность;

2) эмерджентность, заключается в наличии у системы таких свойств, которыми не обладают ее отдельные компоненты;

3) эквипотенциальность, делимость системы на части;

4) гомеостазис, стремление системы сохранять равновесие.

Классификация систем

1. По признаку изменения системы с течением времени: динамические и статические

2. По признаку взаимосвязи причин и следствий: детерминированные и стохастические (вероятностные)

3. По признаку взаимосвязи системы с внешней средой: открытые и замкнутые

4. По признаку сложности: большие (сложные) и простые

5. По признаку автономии управления: саморегулируемые и регулируемые

6. В зависимости от вида взаимосвязи между подсистемами и элементами: с прямой и обратной связью. Прямой называется связь, при которой выходное воздействие одного элемента передается на вход другого. Соответственно, обратная связь - это связь между выходом и входом какого-либо элемента.

Основные функции систем:

1. Пассивное существование в качестве материала для других систем.

2. Обслуживание систем более высокого порядка.

3. Противостояние другим системам.

4. Поглощение других систем.

5. Преобразование других систем.

Моделирование как метод исследования

Модель представляет собой условный образ исследуемого объекта. Конструирование модели начинается с накопления определенной информации, фактов поведения объектов исследования. В начале модель выступает в качестве рабочей гипотезы. Если в результате проверки модели гипотеза подтверждается, то говорят, что модель адекватна изучаемому объекту. Очевидно, что степень адекватности на практике никогда не бывает равной 100%. В этой связи модель считается хорошей (корректной), если она отображает наиболее существенные характеристики объекта, проявляет его свойства, взаимосвязи и позволяет в пределах необходимой точности предвидеть поведение изучаемого объекта.

Классификация моделей.

1. По форме представления модели делятся на: физические, символические и смешанные. К физическим относятся модели подобия и аналоговые. Символическими называются модели, в которых параметры реального объекта и отношения между ними представлены символами (семантические, математические, логистические). Смешанные модели - это человеко-машинные модели.


2. По целевому назначению выделяют: модели структуры, модели функционирования и стоимостные модели.

Модели структуры отображают связи между компонентами объекта и внешней средой и в свою очередь бывают следующих видов: канонические, внутренней структуры, иерархические. Канонические модели характеризуют взаимодействие объекта с окружающей средой через входы и выходы. Модели внутренней структуры характеризуют состав компонентов объекта и связи между ними. Модели иерархической структуры отражают членение объекта на элементы более низкого уровня.

Модели функционирования характеризуют различные процессы, протекающие как внутри изучаемого объекта, так и при взаимодействии объекта с внешней средой. Среди моделей данного вида выделяют: модели жизненного цикла, модели операций, информационные модели, процедурные модели и др. модели жизненного цикла описывают процессы существования объекта от момента зарождения до прекращения его функционирования. Модели операций, выполняемых объектом, представляют собой описание взаимосвязанной совокупности процессов функционирования отдельных элементов объекта при реализации тех или иных его функций. Информационные модели отображают взаимосвязи между источниками и потребителями информации, виды информации и характер ее преобразования. Процедурные модели описывают порядок взаимодействия элементов исследуемого объекта при выполнении различных операций.

Стоимостные модели обычно сопровождают модели функционирования объекта и позволяют проводить комплексную технико-экономическую оценку объекта или его оптимизацию по экономическим критериям.

3. В зависимости от метода работы с моделью выделяют: физические, математические и материально-абстрактные модели. Физические (материальные) модели основаны на воспроизводстве изучаемого объекта. К ним относятся макеты, тренажеры и др. Математические (абстрактные) модели описывают параметры исследуемого объекта с помощью математических символов. Материально-абстрактные (аналоговые) модели представляют собой синтез математической модели и физического образа исследуемого объекта.

Математические модели наиболее распространены в экономических исследованиях. Они подразделяются на две группы: оптимизационные и дескриптивные (описательные). Дескриптивные модели используются только для описания взаимосвязей между элементами исследуемого объекта, или самого объекта с внешней средой. Оптимизационные же позволяют из всего множества возможных решений выбрать наиболее подходящее, согласно применяемому критерию оптимальности.

Структура оптимизационной экономико-математической модели включает в себя две основные части. Во-первых, систему ограничений, которые определяют пределы, сужающие область осуществляемых приемлемых или допустимых решений и фиксируют основные внешние и внутренние свойства объекта. Ограничения определяют область протекания процесса, пределы изменения параметров и характеристик объекта. Во-вторых, целевую функцию, которая математически связывает между собой факторы модели и ее значение определяется значениями этих величин.

Перечислим основные принципы построения экономико-математических моделей. Общие принципы системного экономико-математического моделирования вытекают из общих принципов системного анализа. Они должны дать ответы на следующие вопросы: 1) что должно быть сделано, 2) когда должно быть сделано, 3) при помощи кого должно быть сделано, 4) на основе какой информации осуществляются действия, 5) какой результат должен быть получен в итоге всех действий.

К числу основных принципов построения экономико-математических моделей относятся следующие.

1. Принцип достаточности используемой информации. Данный принцип означает, что в каждой частной модели должна использоваться только та информация, которая известна с требуемой для результатов моделирования точностью. Под известной информацией понимаются нормативные справочные данные о реальной производственной системе, имеющиеся к началу моделирования.

2. Принцип инвариантности используемой информации. Этот принцип предполагает требование того, чтобы используемая в моделях входная информация была независима от параметров моделируемой системы, которые еще не известны на данной стадии исследования.

3. Принцип преемственности моделей. Суть этого принципа сводится к тому, что каждая последующая модель не должна нарушать свойств объекта, установленных или отраженных в предыдущих моделях комплекса.