Ионный кристалл. Поляризация ионных кристаллов

Ионы, из которых состоят ионные кристаллы, удерживаются вместе электростатическими силами. Поэтому структура кристаллической решетки ионных кристаллов должна обеспечивать их электрическую нейтральность.

На рис. 3.24-3.27 схематически изображены важнейшие типы кристаллических решеток ионных кристаллов и приведены подробные сведения о них. Каждому типу ионов в ионной решетке соответствует свое собственное координационное число. Так, в кристаллической решетке хлорида цезия (рис. 3.24) каждый ион Cs+ окружен восемью ионами Cl" и, следовательно, имеет координационное число 8. Аналогично каждый ион Cl- окружен восемью ионами Cs+, т.е. тоже имеет координационное число 8. Поэтому считается, что кристаллическая решетка хлорида цезия имеет координацию 8:8. Кристаллическая решетка хлорида натрия имеет координацию 6:6 (рис. 3.25). Отметим, что в каждом случае обеспечивается сохранение электрической нейтральности кристалла.

Координация и тип кристаллической структуры ионных решеток определяются главным образом двумя следующими факторами: отношением числа катионов к числу анионов и отношением радиусов катионов и анионов.

Гранецентрированная кубическая или октаэдрическая



Рис. 3.25. Кристаллическая структура хлорида натрия (каменной соли).

Отношение числа катионов к числу анионов в кристаллических решетках хлорида цезия (CsCl), хлорида натрия (NaCl) и цинковой обманки (сульфид цинка ZnS) равно 1:1. Поэтому их относят к стехиометрическому типу AB. Флюорит (фторид кальция CaF2) относится к стехиометрическому типу AB2. Подробное обсуждение стехиометрии проводится в гл. 4.

Отношение ионного радиуса катиона (А) к ионному радиусу аниона (В) называется отношением ионных радиусов rJrB. В общем случае, чем больше отношение ионных радиусов, тем больше координационное число решетки (табл. 3.8).

Таблица 3.8. Зависимость координации от отношения ионных радиусов

Координация Отношение ионных радиусов




Рис. 3.26. Кристаллическая структура цинковой обманки.

Как правило, легче рассматривать структуру ионных кристаллов так, будто они состоят из двух частей - анионной и катионной. Например, структуру хлорида цезия можно представить себе состоящей из кубической катионной структуры и кубической анионной структуры. Вместе они образуют две взаимопроникающие (вложенные) структуры, образующие единую объемноцентрированную кубическую структуру (рис. 3.24). Структура типа хлорида натрия, или каменной соли, тоже состоит из двух кубических структур-одной катионной и другой анионной. Вместе они образуют две вложенные кубические структуры, образующие единую гранецентрированную кубическую структуру. Катионы и анионы в этой структуре имеют октаэдрическое окружение с координацией 6:6 (рис. 3.25).

Структура типа цинковой обманки имеет гранецентрированную кубическую решетку (рис. 3.26). Можно рассматривать ее таким образом, будто катионы образуют кубическую структуру, а анионы имеют тетраэдрическую структуру внутри куба. Но если рассматривать анионы как кубическую структуру, то катионы имеют в ней тетраэдрическое расположение.

Структура флюорита (рис. 3.27) отличается от рассмотренных выше тем, что она имеет стехиометрический тип AB2, а также два разных координационных числа - 8 и 4. Каждый ион Ca2+ окружают восемь ионов F-, а каждый ион F- окружают четыре иона Ca2 + . Структуру флюорита можно представить себе как гранецентрированную кубическую катионную решетку, внутри которой имеется тетраэдрическое расположение анионов. Можно представить ее и по-иному: как объемноцентрированную кубическую решетку, в которой катионы находятся в центре кубической ячейки.


Гранецентрировенная кубическая и объемноцентрировэнная кубическая




Все рассмотренные в данном разделе соединения предполагаются чисто ионными. Ионы в них рассматриваются как твердые сферы со строго определенными радиусами. Однако, как было указано в разд. 2.1, многие соединения имеют частично ионный, а частично ковалентный характер. Вследствие этого ионные соединения с заметно выраженным ковалентным характером не могут полностью подчиняться общим правилам, изложенным в данном разделе.

Кристаллич. в-ва, в к-рых сцепление между частицами обусловлено преим. ионными связями. Поскольку между ионными и полярными ковалентными связями существует непрерывный переход, нет резкой границы между И. к. и ковалентными кристаллами. К ионным относят кристаллы, в к-рых связи между атомами наиб. полярны; в осн. это соли щелочных и щел.-зем. металлов. И. к. отличаются высокими т-рами плавления, обычно значит. шириной запрещенной зоны, обладают ионной проводимостью при высоких т-рах и рядом специфич. оптич. св-в (напр., прозрачностью в ближней области ИК спектра). Они м. б. построены как из одноатомных, так и из многоатомных ионов. Пример И. к. первого типа - кристаллы галогенидов щелочных и щел.-зем. металлов; анионы располагаются по закону плотнейшей шаровой упаковки или плотной шаровой кладки (см. Плотная упаковка ), катионы занимают соответствующие пустоты. Наиб. характерные структуры такого типа - NaCl, CsCl, CaF 2 . И. к. второго типа построены из одноатомных катионов тех же металлов и конечных или бесконечных анионных фрагментов. Конечные анионы (кислотные остатки) - NO 3 - , SO 4 2 - , СО 3 2 - и др. Кислотные остатки могут соединяться в бесконечные цепи, слои или образовывать трехмерный каркас, в полостях к-рого располагаются катионы, как, напр., в кристаллич. структурах силикатов. Для И. к. можно рассчитать энергию кристаллич. структуры U(см. табл.), приближенно равную энтальпии сублимации; результаты хорошо согласуются с эксперим. данными. Согласно ур-нию Борна-Майера, для кристалла, состоящего из формально однозарядных ионов:

U= -A/R + Ве - R / r - C/R 6 - D/R 8 + E 0

(R - кратчайшее межионное расстояние, А - константа Маделунга, зависящая от геометрии структуры, Ви r - параметры, описывающие отталкивание между частицами, и характеризуют соотв. диполь-дипольное и диполь-квадрупольное взаимод. ионов, E 0 - энергия нулевых колебаний, е - заряд электрона). С укрупнением катиона возрастает вклад диполь-дипольных взаимодействий.

ЗНАЧЕНИЯ UДЛЯ НЕКОТОРЫХ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Для И. к. выполняется правило электростатич. валентности Полинга: наиб. устойчивые структуры кристаллов те, в к-рых сумма "валентных усилий" каждого аниона Sz/K (z - степень окисления, или формальный заряд, катиона, К- его координац. число) точно или приблизительно равна отрицат. заряду аниона. Так, в структуре шпинели MgAl 2 O 4 каждый ион О 2 - окружают три иона Аl 3+ с К = 6 и один ион Mg 2+ с К= 4; Sz/К= 3.3/6 + 1.2/4 = 2. Это правило справедливо и для структур со значит. ковалентной составляющей связи. Наиб. полную информацию о хим. связях в И. к. дают рентгеноструктурные данные о распределениях электронной плотн. r(r), где r - радиус-вектор. Так, в кристаллах NaCl ф-ция r(r) имеет минимум, равный 70 е/нм 3 ; эффективный заряд каждого иона (по абс. величине) близок к 0,9 е. Следовательно, ионы разделены в пространстве и удерживаются в кристаллич. структуре в осн. электростатич. силами. Электронное распределение в каждом из ионов почти сферически симметрично и лишь на периферии возникает деформация электронной плотности (особенно у аниона). Ион Na + несколько расширен, а ион Сl - сжат вдоль линии связи по сравнению со своб. ионами. Аналогичные эффекты обнаружены в др. галогенидах. Наличие вокруг каждого иона области с миним. r(r) позволило ввести понятие радиуса разделения R разд (расстояние от центра иона до области r(r) миним по линии связи). Как правило, R раэд для катионов выше, а для анионов ниже, чем значения классич. ионных радиусов (за исключением галогенидов Ag). Напр., R раэд для Na в NaCl 0,121 нм, для Mg 2+ в MgO 0,092 нм (соответствующие классич. ионные радиусы 0,098 и 0,074 нм). Лит.: см. при ст. Кристаллы. П. М. Зоркий.

  • - надмолекулярные системы мембран живой клетки и её органоидов, имеющие липопротеидную природу и обеспечивающие избират. прохождение разл. ионов через мембрану. Наиб, распространены каналы для ионов Na+, К+, Са2+...
  • - молекулярные структуры, встроенные в биол. мембраны и осуществляющие перенос ионов в сторону более высокого электрохим. потенциала...

    Биологический энциклопедический словарь

  • - кристаллические включения в ядре, цитоплазме или вакуолях клетки, состоящие обычно из щавелевокислого кальция, реже – из углекислого или сернокислого кальция, кремнезема, белков и каротиноидов...

    Анатомия и морфология растений

  • - , твёрдые тела, обладающие трёхмерной периодич. ат. структурой и, при равновесных условиях образования, имеющие естеств. форму правильных симметричных многогранников...

    Физическая энциклопедия

  • - состоят из двух противоположно заряженных ионов, удерживаемых электростатич. силами, дисперсионными, ион-дипольными или нек-рыми др. взаимодействиями...

    Химическая энциклопедия

  • - см. Атомные радиусы...

    Химическая энциклопедия

  • - тв. тела, атомы или молекулы к-рых образуют упорядоченную периодич. структуру. К. обладают симметрией атомной структуры, соответствующей ей симметрией внеш. формы, а также анизотропией физ. свойств...

    Естествознание. Энциклопедический словарь

  • - ио́нные прибо́ры то же, что газоразрядные приборы...

    Энциклопедия техники

  • - теории, в основе которых лежит предположение о том, что причиной возникновения возбуждения является изменение концентрации ионов внутри и вне клетки...

    Большой медицинский словарь

  • - то же, что газоразрядные приборы...
  • - см. Твёрдые электролиты...

    Большой энциклопедический политехнический словарь

  • - кристаллы, в которых сцепление частиц обусловлено преимущественно ионными химическими связями. И. к. могут состоять как из одноатомных, так и из многоатомных ионов...
  • - газоразрядные приборы, Электровакуумные приборы, действие которых основано на использовании различных видов электрических разрядов в газе или парах металла...

    Большая Советская энциклопедия

  • - условные характеристики ионов, используемые для приблизительной оценки межъядерных расстояний в ионных кристаллах...

    Большая Советская энциклопедия

  • - характеристики расстояний между ядрами катионов и анионов в ионных кристаллах...
  • - вещества, обладающие в твердом состоянии высокой ионной проводимостью, сравнимой с проводимостью жидких электролитов и расплавов солей. К ним относятся Ag2S, AgI, AgBr, CuCl, RbAg4I5 и некоторые твердые растворы...

    Большой энциклопедический словарь

"ИОННЫЕ КРИСТАЛЛЫ" в книгах

Кристаллы

Из книги Колымские тетради автора Шаламов Варлам

Кристаллы Стекло обледенело, Блестит резная запись, В ночной метели белой Скитается анапест. Летят снежинки-строфы, Где ямбы и хореи, Как блестки катастрофы Разгрома в эмпирее. Их четкое строенье Еще с времен Гомера - Точь-в-точь стихотворенье Старинного

КРИСТАЛЛЫ

Из книги Вернадский: жизнь, мысль, бессмертие автора Баландин Рудольф Константинович

КРИСТАЛЛЫ Вернадский на летней студенческой практике всерьез занимался изучением почв.«Почвы, - писал Докучаев, - являясь результатом чрезвычайно сложного взаимодействия местного климата, растительных и животных организмов, состава и строения материнских горных

75. Кристаллы

Из книги Мэрилин Монро. Тайна смерти. Уникальное расследование автора Реймон Уильям

75. Кристаллы Ритм погони ускорялся.Чтобы успешно закончить охоту, надо было непременно установить реальные причины смерти Мэрилин.Для того чтобы сделать это, я должен был поставить себя на место Томаса Ногуши в тот день 5 августа 1962 года.* * *Было бы наивно полагать, что на

Кристаллы

Из книги Сжатый Хаос: введение в Магию Хаоса автора Хайн Фил

Кристаллы Нет ни одного предмета, которому пелись бы такие дифирамбы, как кристаллам. Им приписывается самая настоящая магическая универсальность, а сфера их возможного применения определяется направленностью книг, которые вы читаете. Кристаллы обладают целительной

Кристаллы

Из книги Викканская энциклопедия магических ингредиентов автора Росеан Лекса

Кристаллы Правитель: Мать-Земля. Тип: минералы. Магическая форма: необработанные, полированные. Все кристаллы обладают целительной энергией. Некоторые ведьмы используют их как жезлы

Кристаллы

Из книги Полная система фен-шуй автора Семенова Анастасия Николаевна

Кристаллы Для коррекции энергетики вашего дома и активизации зон багуа вполне пригодны обработанные драгоценные и поделочные камни. Но все же гораздо больший эффект вы получите от природного, необработанного кристалла. Почему это так важно? Каждый кристалл рождается на

КРИСТАЛЛЫ

Из книги История гуманоидных цивилизаций Земли автора Бязырев Георгий

КРИСТАЛЛЫ То пуповину рвем, рождаясь, То рвем серебряную нить… Лишь тем кристаллы изменяют, Кого не могут изменить… Во времена Атлантиды самыми нужными и могущественными вещами считались монокристаллы. Они использовались как принципиальный источник дармовой

Литий-ионные аккумуляторы

Из книги Бывший горожанин в деревне. Лучшие рецепты для загородной жизни автора Кашкаров Андрей

Литий-ионные аккумуляторы Литий-ионные (Li-Ion) аккумуляторы показывают неплохие характеристики при низких температурах. Большинство производителей специфицирует этот тип батарей до –20 °C, при этом под малой нагрузкой батареи способны отдать до 70 % своей емкости при

П3.4. Как хранить литий-ионные АКБ ноутбуков. Несколько рекомендаций

Из книги Современный квартирный сантехник, строитель и электрик автора Кашкаров Андрей Петрович

П3.4. Как хранить литий-ионные АКБ ноутбуков. Несколько рекомендаций Батареи должны храниться в заряженном состоянии при температуре от +15 °С до +35 °С при нормальной влажности воздуха; со временем АКБ незначительно саморазряжается, даже если она хранится отдельно от

Ионные и лазерные установки

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

Ионные и лазерные установки Вопрос. Как должны компоноваться и размещаться ионные и лазерные установки?Ответ. Должны компоноваться, а входящие в их состав блоки размещаться с учетом мер, обеспечивающих помехоустойчивость управляющих и измерительных цепей этих

Литий-ионные (Li-Ion) аккумуляторы

Из книги Источники питания и зарядные устройства автора

Литий-ионные (Li-Ion) аккумуляторы Литий является самым легким металлом, в то же время он обладает и сильно отрицательным электрохимическим потенциалом. Благодаря этому литий характеризуется наибольшей теоретической удельной электрической энергией. Вторичные источники

В сложных кристаллах, состоящих из элементов различной валентности, возможно образование ионного типа связи. Такие кристаллы называют ионными.

При сближении атомов и перекрытии валентных энергетических зон между элементами происходит перераспределение электронов. Электроположительный элемент теряет валентные электроны, превращаясь в положительный ион, а электроотрицательный - приобретает его, достраивая тем самым свою валентную зону до устойчивой конфигурации, как у инертных газов. Таким образом, в узлах ионного кристалла располагаются ионы.

Представитель этой группы - кристалл оксида решетка которого состоит из отрицательно заряженных ионов кислорода и положительно заряженных ионов железа.

Перераспределение валентных электронов при ионной связи происходит между атомами одной молекулы (одним атомом железа и одним атомом кислорода).

Для ковалентных кристаллов координационное число К, а слелователыю, и возможный тип решетки определяются валентностью элемента. Для ионных кристаллов координационное число определяется соотношением радиусов металлического и неметаллического ионов, так как каждый ион стремится притянуть к себе как можно больше ионов противоположного знака. Ионы в решетке укладываются как шары разных диаметров.

Радиус неметаллического иона больше радиуса металлического, и поэтому металлические ионы заполняют поры в кристаллической решетке, образованной ионами неметалла. В ионных кристаллах координационное число

определяет число ионов противоположного знака, которые окружают данный ион.

Приведенные ниже значения отношений радиуса металла к радиусу неметалла и соответствующие им координационные числа вытекают из геометрии упаковки шаров разных диаметров.

Для координационное число будет равно 6, так как указанное соотношение равно 0,54. На рис. 1.14 приведена кристаллическая решетка Ионы кислорода образуют ГЦК решетку, ионы железа занимают в ней поры. Каждый ион железа окружен шестью ионами кислорода, и, наоборот, каждый ион кислорода окружен шестью ионами железа, В связи с этим в ионных кристаллах нельзя выделить пару ионов, которые можно было бы считать молекулой. При испарении такой кристалл распадается на молекулы.

При нагреве соотношение ионных радиусов может изменяться, так как ионный радиус неметалла растет интенсивнее, чем радиус металлического иона. Это приводит к изменению типа кристаллической структуры, т. е. к полиморфизму. Например, у оксида при нагреве шпинельная кристаллическая решетка изменяется на ромбоэдрическую решетку (см. п. 14.2),

Рис. 1.14. Кристаллическая решетка а - схема; б - пространственное изображение

Энергия связи ионного кристалла по своей величине близка к энергии связи ковалентных кристаллов и превышает энергию связи металлических и тем более молекулярных кристаллов. В связи с этим ионные кристаллы имеют высокую температуру плавления и испарения, высокий модуль упругости и низкие коэффициенты сжимаемости и линейного расширения.

Заполнение энергетических зон вследствие перераспределения электронов делает ионные кристаллы полупроводниками или диэлектриками.

Ионные кристаллы представляют собой соединения с преобладающим ионным характером химической связи, в основе которой лежит электростатическое взаимодействие между заряженными ионами. Типичными представителями ионных кристаллов являются галогениды щелочных металлов, например, со структурой типа NaCl и СaСl.

При образовании кристаллов типа каменной соли (NaCl) атомы галогенов (F, Сl, Вг, I), обладающие большим сродством к электрону захватывают валентные электроны щелочных металлов (Li, Nа, К, Rb, I), имеющих низкие ионизационные потенциалы, при этом образуются положительные и отрицательные ионы, электронные оболочки которых подобны сферически симметричным заполненным s 2 p 6 -оболочкам ближайших инертных газов (например, оболочка N + подобна оболочке Ne, а оболочка Сl - оболочке Аr). В результате кулоновского притяжения анионов и катионов происходит перекрытие шести внешних р-орбиталей и образуется решетка типа NаСl, симметрия которой и координационное число, равное 6, отвечают шести валентным связям каждого атома со своими соседями (Рис.3.4). Существенным является то, что приперекрытии р-орбиталей имеет место понижение номинальных зарядов (+1 для Nа и -1 для Сl) на ионах до небольших реальных значений вследствие сдвига электронной плотности в шести связях от аниона к катиону, так что реальный заряд атомов в соединении оказывается, например, для Nа равным +0,92е, а для Сl- отрицательный заряд становится также меньше -1 е.

Понижение номинальных зарядов атомов до реальных значений в соединениях свидетельствует о том, что даже при взаимодействии наиболее электроотрицательными электроположительных элементов образуются соединения, в которых связь не является чисто ионной.

Рис. 3.4. Ионный механизм образования межатомных связей в структурах типа NaCl . Стрелками показаны направления сдвига электронной плотности

По описанному механизму образуются не только галогениды щелочных металлов, но также нитриды, карбиды переходных металлов, большинство которых имеют структуру типа NаCl.

В силу того что ионная связь ненаправленна, ненасыщенна, для ионных кристаллов характерны большие координационные числа. Основные особенности строения ионных кристаллов хорошо описываются на основе принципа плотнейших упаковок из шаров определенных радиусов. Так, в структуре NаСl крупные анионы Сl образуют кубическую плотнейшую упаковку, в которой заселены все октаэдрические пустоты более мелкими по размеру катионами Na. Таковы структуры KCl, RbCl и многих других соединений.

К ионным кристаллам относятся большинство диэлектриков с высокими значениями удельного электрического сопротивления. Электропроводность ионных кристаллов при комнатной температуре более чем на двадцать порядков меньше электропроводности металлов. Электропроводность в ионных кристаллах осуществляется, в основном, ионами. Большинство ионных кристаллов прозрачны в видимой области электромагнитного спектра.

В ионных кристаллах притяжение обусловлено, главным образом, кулоновским взаимодействием между заряженными ионами. - Кроме притяжения между разноименно заряженными ионами существует также отталкивание, обусловленное, с одной стороны, отталкиванием одноименных зарядов, с другой - действием принципа запрета Паули, поскольку каждый ион обладает устойчивыми электронными конфигурациями инертных газов с заполненными оболочками. С точки зрения сказанного в простой модели ионного кристалла можно принять, что ионы представляют собой жесткие непроницаемые заряженные сферы, хотя реально под действием электрических полей соседних ионов сферически-симметричная форма ионов в результате поляризации несколько нарушается.

В условиях, когда существуют одновременно и силы притяжения и силы отталкивания, устойчивость ионных кристаллов объясняется тем, что расстояние между разноименными зарядами меньше, чем между одноименными. Поэтому силы притяжения преобладают над силами отталкивания.

Снова, как и в случае молекулярных кристаллов, при расчете энергии сцепления ионных кристаллов можно исходить из обычных классических представлений, считая, что ионы находятся в узлах кристаллической решетки (положениях равновесий), их кинетическая энергия пренебрежимо мала и силы, действующие между ионами, являются центральными.