Сравнительная характеристика элементов подгруппы iva. Общая характеристика элементов IVA группы

16.1. Общая характеристика элементов IIIA, IVA и VA групп

B
Бор
0,776

C
Углерод
0,620

N
Азот
0,521

Al Алюминий
1,312

Si
Кремний
1,068

P
Фосфор
0,919

Ga
Галлий
1,254

Ge Германий
1,090

As
Мышьяк
1,001

In
Индий
1,382

Sn
Олово
1,240

Sb
Сурьма
1,193

Tl
Таллий
1,319

Pb
Свинец
1,215

Bi
Висмут
1,295

Состав этих трех групп естественной системы элементов показан на рисунке 16.1. Здесь же приведены значения орбитальных радиусов атомов (в ангстремах). Именно в этих группах наиболее четко прослеживается граница между элементами, образующими металлы (орбитальный радиус больше 1,1 ангстрема), и элементами, образующими неметаллы (орбитальный радиус меньше 1,1 ангстрема). На рисунке эта граница показана двойной линией. Не следует забывать, что граница эта все же условна: алюминий, галлий, олово, свинец и сурьма безусловно амфотерные металлы, но и бор, германий, мышьяк проявляют некоторые признаки амфотерности.
Из атомов элементов этих трех групп в земной коре чаще всего встречаются следующие: Si (w = 25,8 %), Al (w = 7,57 %), P (w = 0,090 %), C (w = 0,087 %) и N (w = 0,030 %). Именно с ними вы и познакомитесь в этой главе.
Общие валентные электронные формулы атомов элементов IIIA группы – ns 2 np 1 , IVA группы – ns 2 np 2 , VA группы – ns 2 np 3 . Высшие степени окисления равны номеру группы. Промежуточные на 2 меньше.
Все простые вещества, образуемые атомами этих элементов (за исключением азота) – твердые. Для многих элементов характерна аллотропия (B, C, Sn, P, As). Устойчивых молекулярных веществ всего три: азот N 2 , белый фосфор P 4 и желтый мышьяк As 4 .

Элементы-неметаллы этих трех групп склонны образовывать молекулярные водородные соединения с ковалентными связями. Причем у углерода их так много, что углеводороды и их производные изучает отдельная наука – органическая химия. Второй по количеству водородных соединений среди этих элементов – бор. Бороводороды (бораны) весьма многочисленны и сложны по строению, поэтому химия бороводородов также выделилась в отдельный раздел химии. Кремний образует всего 8 водородных соединений (силанов), азот и фосфор – по два, остальные – по одному водородному соединению. Молекулярные формулы простейших водородных соединений и их названия:

Состав высших оксидов соответствует высшей степени окисления, равной номеру группы. Тип высших оксидов в каждой из групп с увеличением порядкового номера постепенно меняется от кислотного к амфотерному или основному.

Кислотно-основный характер гидроксидов весьма разнообразен. Так, HNO 3 – сильная кислота, а TlOH – щелочь.

1.Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов IIIA, IVA и VA групп. Укажите внешние и валентные электроны.

У атома азота есть три неспаренных электрона, поэтому по обменному механизму он может образовать три ковалентных связи. Еще одну ковалентную связь он может образовать по донорно-акцепторному механизму, при этом атом азота приобретает положительный формальный заряд +1 е . Таким образом, максимально азот пятивалентен, но его максимальная ковалентность равна четырем.(Именно этим объясняется часто свтречающееся утверждение о том, что азот не может быть пятивалентным)
Почти весь земной азот находится в атмосфере нашей планеты. Существенно меньшая часть азота присутствует в литосфере в виде нитратов. Азот входит в состав органических соединений, содержащихся во всех организмах и в продуктах их разложения.
Азот образует единственное простое молекулярное вещество N 2 с тройной связью двухатомной в молекуле (рис. 16.2). Энергия этой связи равна 945 кДж/моль, что превышает значения других энергий связи (см. таблицу 21). Этим объясняется инертность азота при обычных температурах. По физическим характеристикам азот – бесцветный газ без запаха, хорошо знакомый нам с рождения (земная атмосфера на три четверти состоит из азота). В воде азот малорастворим.

Азот образует два водородных соединения : аммиак NH 3 и гидразин N 2 H 6:

Аммиак – бесцветный газ с резким удушающим запахом. Неосторожное вдыхание концентрированных паров аммиака может привести к спазму и удушью. Аммиак очень хорошо растворим в воде, что объясняется образованием каждой молекулой аммиака четырех водородных связей с молекулами воды.

Молекула аммиака – частица-основание (см. приложение 14). Принимая протон она превращается в ион аммония. Реакция может протекать как в водном растворе, так и в газовой фазе:

NH 3 + H 2 O NH 4 + OH (в растворе);
NH 3 + H 3 O B = NH 4 + H 2 O (в растворе);
NH 3г + HCl г = NH 4 Cl кр (в газовой фазе).

Водные растворы аммиака достаточно щелочные для осаждения нерастворимых гидроксидов, но недостаточно щелочные для того, чтобы амфотерные гидроксиды растворялись в них с образованием гидроксокомплексов. Поэтому раствор аммиака удобно использовать для получения амфотерных гидроксидов p -элементов: Al(OH) 3 , Be(OH) 2 , Pb(OH) 2 и т. п., например:

Pb 2 + 2NH 3 + 2H 2 O = Pb(OH) 2 + 2NH 4 .

При поджигании на воздухе аммиак сгорает, образуя азот и воду; при взаимодействии с кислородом в присутствии катализатора (Pt) обратимо окисляется до монооксида азота:

4NH 3 + 3O 2 = 2N 2 + 6H 2 O (без катализатора),
4NH 3 + 5O 2 4NO + 6H 2 O (с катализатором).

При нагревании аммиак может восстанавливать оксиды не очень активных металлов, например, меди:

3CuO + 2NH 3 = 3Cu + N 2 + 3H 2 O

Соли аммония по своим свойствам (кроме термической устойчивости) похожи на соли щелочных металлов. как и последние, почти все они растворимы в воде, но, так как ион аммония является слабой кислотой, гидролизованы по катиону. При нагревании соли аммония разлагаются:

NH 4 Cl = NH 3 + HCl ;
(NH 4) 2 SO 4 = NH 4 HSO 4 + NH 3 ;
(NH 4) 2 CO 3 = 2NH 3 + CO 2 + H 2 O ;
NH 4 HS = NH 3 + H 2 S ;
NH 4 NO 3 = N 2 O + 2H 2 O ;
NH 4 NO 2 = N 2 + 2H 2 O ;
(NH 4) 2 HPO 4 = NH 3 + (NH 4)H 2 PO 4 ;
(NH 4)H 2 PO 4 = NH 4 PO 3 + H 2 O .

Азот в различных степенях окисления образует с кислородом пять оксидов : N 2 O, NO, N 2 O 3 , NO 2 и N 2 O 5 .
Наиболее устойчив из них диоксид азота. Это бурый ядовитый газ с неприятным запахом. Реагирует с водой:

2NO 2 + H 2 O = HNO 2 + HNO 3 .

С раствором щелочи реакция идет с образованием нитрата и нитрита.
N 2 O и NO – несолеобразующие оксиды.
N 2 O 3 и N 2 O 5 – кислотные оксиды. Реагируя с водой, они соответственно образуют растворы азотистой и азотной кислот.

Оксокислота азота в степени окисления +III – азотистая кислота HNO 2 . Это слабая кислота, молекулы которой существуют только в водном растворе. Ее соли – нитриты. Азот в азотистой кислоте и нитритах легко окисляется до степени окисления +V.

В отличие от азотистой, азотная кислота HNO 3 – сильная кислота. Строение ее молекулы может быть выражено двумя способами:

С водой азотная кислота смешивается во всех отношениях, в разбавленных растворах нацело с ней реагируя:

HNO 3 + H 2 O = H 3 O + NO 3

Азотная кислота и ее растворы – сильные окислители. При разбавлении азотной кислоты ее окислительная активность снижается. В растворах азотной кислоты любой концентрации атомами окислителями являются прежде всего атомы азота, а не водорода. Поэтому при окислении азотной кислотой различных веществ водород если и выделяется, то только как побочный продукт. В зависимости от концентрации кислоты и восстановительной активности другого реагента, продуктами реакции могут быть NO 2 , NO, N 2 O, N 2 и даже NH 4 . Чаще всего образуется смесь газов, но в случае концентрированной азотной кислоты выделяется только диоксид азота:

Cu + 4HNO 3 = Cu(NO 3) 2 + 2NO 2 ­ + 2H 2 O
3FeS + 30HNO 3 = Fe 2 (SO 4) 3 + Fe(NO 3) 3 + 27NO 2 + 15H 2 O

В случае разбавленной азотной кислоты чаще всего выделяется монооксид азота:

Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2H 2 O
3H 2 S + 2HNO 3 = 2NO + 4H 2 O + 3S

В случае очень разбавленной азотной кислоты, реагирующей с сильным восстановителем (Mg, Al, Zn), образуются ионы аммония:

4Mg + 10HNO 3 = 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Те металлы, которые пассивируются концентрированной серной кислотой, пассивируются и концентрированной азотной кислотой.
Соли азотной кислоты – нитраты – термически неустойчивые соединения. При нагревании они разлагаются:
2KNO 3 = 2KNO 2 + O 2 ;
2Zn(NO 3) 2 = 2ZnO + 4NO 2 + O 2 ;
2AgNO 3 = 2Ag + 2NO 2 + O 2 .

1.Составьте уравнения реакций, данных в тексте параграфа описательно.
2.Составьте уравнения реакций, характеризующих химические свойства а) аммиака, б) азотной кислоты, в) нитрата цинка.
Химические свойства аммиака и азотной кислоты.

16.3. Фосфор

В отличие от атома азота, атом фосфора может образовывать пять ковалентных связей по обменному механизму. Традиционное объяснение этого сводится к возможности возбуждения одного из 3s -электронов и переход его на 3d -подуровень.
Элемент фосфор образует довольно много аллотропных модификаций . Из них наиболее устойчивы три модификации: белый фосфор, красный фосфор и черный фосфор. Белый фосфор – воскообразное ядовитое склонное к самовозгоранию на воздухе вещество, состоящее из молекул P 4 . Красный фосфор – немолекулярное менее активное вещество темно-красного цвета с довольно сложным строением. Обычно красный фосфор всегда содержит примесь белого, поэтому и белый, и красный фосфор всегда хранят под слоем воды. Черный фосфор – также немолекулярное вещество со сложным каркасным строением.
Молекулы белого фосфора тетраэдрические, атом фосфора в них трехвалентен. Шаростержневая модель и структурная формула молекулы белого фосфора:


Строение красного фосфора может быть выражено структурной формулой:

Получают фосфор из фосфата кальция при нагревании с песком и коксом:

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P + 5CO.

Для фосфора наиболее характерны соединения со степенью окисления +V. При взаимодействии с избытком хлора фосфор образует пентахлорид. При сгорании любой аллотропной модификации фосфора в избытке кислорода образуется оксид фосфора(V):

4Р + 5O 2 = 2P 2 O 5 .

Существует две модификации оксида фосфора(V): немолекулярная (с простейшей формулой P 2 O 5) и молекулярная (с молекулярной формулой P 4 O 10). Обычно оксид фосфора представляет собой смесь этих веществ.

Этот очень гигроскопичный кислотный оксид, реагируя с водой, образует последовательно метафосфорную, дифосфорную и ортофосфорную кислоты:

P 2 O 5 + H 2 O = 2HPO 3 , 2HPO 3 + H 2 O = H 4 P 2 O 7 , H 4 P 2 O 7 + H 2 O = 2H 3 PO 4 .

Ортофосфорная кислота (обычно ее называют просто фосфорной) – трехосновная слабая кислота (см. приложение 13). Это бесцветное кристаллическое вещество, очень хорошо растворимое в воде. При реакции с сильными основаниями в зависимости от соотношения реагентов образует три ряда солей (ортофосфаты, гидроортофосфаты и дигидроортофосфаты – обычно в их названиях приставку "орто" опускают):

H 3 PO 4 + OH = H 2 PO 4 + H 2 O,
H 3 PO 4 + 2OH = HPO 4 2 + 2H 2 O,
H 3 PO 4 + 3OH = PO 4 3 + 3H 2 O.

Большинство средних фосфатов (исключение – соли щелочных элементов кроме лития) нерастворимы в воде. Растворимых кислых фосфатов существенно больше.
Фосфорную кислоту получают из природного фосфата кальция, обрабатывая его избытком серной кислоты. При другом соотношении фосфата кальция и серной кислоты образуется смесь дигидрофосфата и сульфата кальция, используемая в сельском хозяйстве в качестве минерального удобрения под названием "простой суперфосфат":
Ca 3 (PO 4) 2 + 3H 2 SO 4 = 2H 3 PO 4 + 3CaSO 4 ;
Ca 3 (PO 4) 2 + 2H 2 SO 4 = Ca(H 2 PO 4) 2 + 2CaSO 4 .

Более ценный "двойной суперфосфат" получают по реакции

Ca 3 (PO 4) 2 + 4H 3 PO 4 = 3Ca(H 2 PO 4) 3 .

Основным веществом этого минерального удобрения является дигидрофосфат кальция.

1.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения.
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) фосфора, б) оксида фосфора(V), в) ортофосфорной кислоты, г) дигидрофосфата натрия.
Химические свойства фосфорной кислоты.

16.4. Углерод

Углерод – основная составная часть всех организмов. В природе встречаются как простые вещества, образованные углеродом (алмаз, графит), так и соединения (углекислый газ, различные карбонаты, метан и другие углеводороды в составе природного газа и нефти). Массовая доля углерода в каменных углях доходит до 97 %.
Атом углерода в основном состоянии может образовать две ковалентных связи по обменному механизму, но в обычных условиях такие соединения не образуются. Атом углерода, переходя в возбужденное состояние, использует все четыре валентных электрона.
Углерод образует довольно много аллотропных модификаций (см. рис. 16.2). Это алмаз, графит, карбин, различные фуллерены.

Алмаз – очень твердое бесцветное прозрачное кристаллическое вещество. Кристаллы алмаза состоят из атомов углерода в sp 3 -гибридизованном состоянии, образующих пространственный каркас.
Графит – довольно мягкое кристаллическое вещество серо-черного цвета. Кристаллы графита состоят из плоских слоев, в которых атомы углерода находятся в sp 2 -гибридном состоянии и образуют сетки с шестигранными ячейками.
Карбин – бесцветное вещество волокнистого строения, состоящее из линейных молекул, в которых атомы углерода находятся в sp -гибридном состоянии (=С=С=С=С= или –С С–С С–).
Фуллерены – молекулярные аллотропные модификации углерода с молекулами C 60 , C 80 и др. Молекулы этих веществ представляют собой полые сетчатые сферы.
Все модификации углерода проявляют восстановительные свойства в большей степени, чем окислительные, например, кокс (продукт переработки каменного угля; содержит до 98 % углерода) используется для восстановления железа из оксидных руд и ряда других металлов из их оксидов:

Fe 2 O 3 + 3C = 2Fe + 3CO (при высокой температуре).

Большую часть соединений углерода изучает органическая химия, с которой вы познакомитесь в 10-м и 11-м классах.
В неорганических веществах степень окисления углерода +II и +IV. С такими степенями окисления углерода существуют два оксида .
Оксид углерода(II) – бесцветный ядовитый газ, без запаха. Тривиальное название – угарный газ. Образуется при неполном сгорании углеродсодержащего горючего. Электронное строение его молекулы см. на стр. 121. По химическим свойствам CO несолеобразующий оксид, при нагревании проявляет восстановительные свойства (восстанавливает до металла многие оксиды не очень активных металлов).
Оксид углерода(IV) – бесцветный газ без запаха. Тривиальное название – углекислый газ. Кислотный оксид. В воде малорастворим (физически), частично реагирует с ней, образуя угольную кислоту H 2 CO 3 (молекулы этого вещества существуют только в очень разбавленных водных растворах).
Угольная кислота – кислота очень слабая (см. приложение 13), двухосновная, образует два ряда солей (карбонаты и гидрокарбонаты). Большинство карбонатов нерастворимо в воде. Из гидрокарбонатов как индивидуальные вещества существуют только гидрокарбонаты щелочных металлов и аммония. И карбонат-ион, и гидрокарбонат-ион – частицы основания, поэтому и карбонаты, и гидрокарбонаты в водных растворах подвергаются гидролизу по аниону.
Из карбонатов наибольшее значение имеют карбонат натрия Na 2 CO 3 (сода, кальцинированная сода, стиральная сода), гидрокарбонат натрия NaHCO 3 (питьевая сода, пищевая сода), карбонат калия K 2 CO 3 (поташ) и карбонат кальция CaCO 3 (мел, мрамор, известняк).
Качественная реакция на присутствие в газовой смеси углекислого газа: образование осадка карбоната кальция при пропускании исследуемого газа через известковую воду (насыщенный раствор гидроксида кальция) и последующее растворение осадка при дальнейшем пропускании газа. Протекающие реакции: Элемент кремний образует одно простое вещество с тем же названием. Это немолекулярное вещество со структурой алмаза, которому кремний лишь немного уступает по твердости. За последние полвека кремний стал абсолютно необходимым материалом для нашей цивилизации, так как его монокристаллы используются практически во всей электронной аппаратуре.
Кремний – довольно инертное вещество. при комнатной температуре он практически ни с чем кроме фтора и фтороводорода не реагирует:
Si + 2F 2 = SiF 4 ;
Si + 4HF = SiF 4 + 2H 2 .
При нагревании в виде тонко измельченного порошка сгорает в кислороде, образуя диоксид (SiO 2). При сплавлении со щелочью или при кипячении с концентрированными растворами щелочей образует силикаты:

Si + 4NaOH = Na 4 SiO 4 + 2H 2 ;
Si + 2NaOH + H 2 O = Na 2 SiO 3 + 2H 2 .

Монооксид кремния SiO – несолеобразующий оксид ; легко окисляется до диоксида.
Диоксид кремния SiO 2 – немолекулярное вещество каркасного строения. С водой не реагирует. кислотный оксид – при сплавлении со щелочами образует силикаты, например:
SiO 2 + 2NaOH = Na 2 SiO 3 + H 2 O . Алюминий – следующий по распространенности в литосфере Земли элемент после кремния. Самостоятельно и вместе с кремнием он образует множество минералов: полевые шпаты, слюды, корунд Al 2 O 3 и его драгоценные разновидности (бесцветный лейкосапфир, содержащий примеси хрома рубин, содержащий примеси титана сапфир).
Простое вещество алюминий – серебристо-белый блестящий легкий металл. Чистый алюминий очень мягкий, его можно прокатывать в тонкую фольгу, вытягивать из него проволоку. У алюминия хорошая электропроводность. Он стоек к атмосферным воздействиям. Сплавы алюминия достаточно твердые, но хорошо обрабатываются. Алюминий не ядовит. Все это позволяет использовать алюминий в самых разнообразных отраслях промышленности: в авиационной, электротехнической, пищевой промышленности, в строительстве. Широко используется алюминий и в быту. Получают алюминий путем электролиза расплава его соединений.
Химическая инертность алюминия вызвана наличием на его поверхности плотной оксидной пленки, препятствующей контакту металла с реагентом. При удалении этой пленки химическим или механическим путем алюминий становится весьма активным. Так, лишенный оксидной пленки, алюминий самовоспламеняется и сгорает на воздухе без дополнительного нагревания.
Восстановительные свойства алюминия особенно хорошо проявляются при нагревании. В этих условиях он восстанавливает из оксидов многие металлы: не только железо, титан, цирконий, но даже кальций и барий.
Оксид алюминия Al 2 O 3 (тривиальные названия – глинозем, корунд) – немолекулярное вещество, связь в котором плохо описывается и как ионная, и как ковалентная. Как всегда в этих случаях это амфотерный оксид. Получают его при прокаливании гидроксида алюминия, который также обладает амфотерными свойствами.
Гидратированный ион алюминия – катионная кислота, поэтому растворимые соли алюминия довольно сильно гидролизованы.
Из солей алюминия наиболее употребмы алюмокалиевые квасцы KAl(SO 4) 2 ·12H 2 O – додекагидрат сульфата калия-алюминия. Это негигроскопичное прекрасно кристаллизующееся вещество. Его раствор ведет себя как смесь растворов двух разных сульфатов: сульфата калия и сульфата алюминия. Строение квасцов может быть выражено формулой: (SO 4) 2 .

1.Составьте уравнения реакций, данных в тексте параграфа описательно.
2.Составьте уравнения реакций, характеризующих химические свойства а) алюминия, б) гидроксида алюминия, и) алюмокалиевых квасцов..
Химические свойства солей алюминия

В IVA группе находятся самые важные элементы, без которых не было бы ни нас, ни Земли, на которой мы живем. Это углерод – основа всей органической жизни, и кремний – «монарх» царства минералов.

Если углерод и кремний – типичные неметаллы, а олово и свинец – металлы, то германий занимает промежуточное положение. Одни учебники относят его к неметаллам, а другие – к металлам. Он серебристо-белого цвета и внешне похож на металл, но имеет алмазоподобную кристаллическую решетку и является полупроводником, как и кремний.

От углерода к свинцу (с уменьшением неметаллических свойств):

w уменьшается устойчивость отрицательной степени окисления (-4)

w уменьшается устойчивость высшей положительной степени окисления (+4)

w увеличивается устойчивость низкой положительной степени окисления (+2)

Углерод – основная составная часть всех организмов. В природе встречаются как простые вещества, образованные углеродом (алмаз, графит), так и соединения (углекислый газ, различные карбонаты, метан и другие углеводороды в составе природного газа и нефти). Массовая доля углерода в каменных углях доходит до 97 %.
Атом углерода в основном состоянии может образовать две ковалентных связи по обменному механизму, но в обычных условиях такие соединения не образуются. Атом углерода, переходя в возбужденное состояние, использует все четыре валентных электрона.
Углерод образует довольно много аллотропных модификаций (см. рис. 16.2). Это алмаз, графит, карбин, различные фуллерены.

В неорганических веществах степень окисления углерода +II и +IV. С такими степенями окисления углерода существуют два оксида.
Оксид углерода(II) – бесцветный ядовитый газ, без запаха. Тривиальное название – угарный газ. Образуется при неполном сгорании углеродсодержащего горючего. Электронное строение его молекулы см. на стр. 121. По химическим свойствам CO несолеобразующий оксид, при нагревании проявляет восстановительные свойства (восстанавливает до металла многие оксиды не очень активных металлов).
Оксид углерода(IV) – бесцветный газ без запаха. Тривиальное название – углекислый газ. Кислотный оксид. В воде малорастворим (физически), частично реагирует с ней, образуя угольную кислоту H2CO3(молекулы этого вещества существуют только в очень разбавленных водных растворах).
Угольная кислота – кислота очень слабая, двухосновная, образует два ряда солей (карбонаты и гидрокарбонаты). Большинство карбонатов нерастворимо в воде. Из гидрокарбонатов как индивидуальные вещества существуют только гидрокарбонаты щелочных металлов и аммония. И карбонат-ион, и гидрокарбонат-ион – частицы основания, поэтому и карбонаты, и гидрокарбонаты в водных растворах подвергаются гидролизу по аниону.
Из карбонатов наибольшее значение имеют карбонат натрия Na2CO3 (сода, кальцинированная сода, стиральная сода), гидрокарбонат натрия NaHCO3 (питьевая сода, пищевая сода), карбонат калия K2CO3(поташ) и карбонат кальция CaCO3 (мел, мрамор, известняк).
Качественная реакция на присутствие в газовой смеси углекислого газа: образование осадка карбоната кальция при пропускании исследуемого газа через известковую воду (насыщенный раствор гидроксида кальция) и последующее растворение осадка при дальнейшем пропускании газа. Протекающие реакции:

Ca2 + 2OH +CO2 = CaCO3 + H2O;
CaCO3 + CO2 + H2O = Ca2 +2HCO3 .

В фармакологии и медицине широко используются различные соединения углерода - производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) - для лечения кожных заболеваний; радиоактивные изотопы углерода - для научных исследований (радиоуглеродный анализ).

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод - основа жизни. Источником углерода для живых организмов обычно является СО 2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возвращением в атмосферу, либо захоронением в виде угля или нефти.

Аналитические реакции карбонат - иона СО 3 2-

Карбонаты - соли нестабильной, очень слабой угольной кислоты Н 2 СО 3 , которая в свободном состоянии в водных растворах неустойчива и разлагается с выделением СО 2: Н 2 СО 3 -- СО 2 + Н 2 О

Карбонаты аммония, натрия, рубидия, цезия растворимы в воде. Карбонат лития в воде мало растворим. Карбонаты остальных металлов мало растворимы в воде. Гидрокарбонаты растворяются в воде. Карбонат - ионы в водных растворах бесцветны, подвергаются гидролизу. Водные растворы гидрокарбонатов щелочных металлов не окрашиваются при прибавлении к ним капли раствора фенолфталеина, что позволяет отличить растворы карбонатов от растворов гидрокарбонатов (фармакопейный тест).

1.Реакция с хлоридом бария.

Ва 2+ + СОз 2 - -> ВаСО 3 (белый мелкокристаллический)

Аналогичные осадки карбонатов дают катионы кальция (СаСО 3) и стронция (SrCO 3). Осадок растворяется в минеральных кислотах и в уксусной кислоте. В растворе H 2 SO 4 образуется белый осадок BaSO 4 .

К осадку медленно, по каплям прибавляют раствор НС1 до полного растворения осадка: ВаСОз + 2 НС1 -> ВаС1 2 + СО 2 + Н 2 О

2.Реакция с сульфатом магния (фармакопейная).

Mg 2+ + СОз 2 - ->MgCO 3 (белый)

Гидрокарбонат - ион НСО 3 - образует с сульфатом магния осадок MgCO 3 только при кипячении: Mg 2+ + 2 НСОз- -> MgCO 3 + СО 2 + Н 2 О

Осадок MgCO 3 растворяется в кислотах.

3. Реакция с минеральными кислотами (фармакопейная).

СО 3 2- + 2 Н 3 О = Н 2 СО 3 + 2Н 2 О

НСО 3 - + Н 3 О + = Н 2 СО 3 + 2Н 2 О

Н 2 СО 3 -- СО 2 + Н 2 О

Выделяющийся газообразный СО 2 обнаруживают по помутнению баритоновой или известковой воды в приборе для обнаружения газов, пузырьков газа (СО 2), в пробирке - приемнике - помутнение раствора.

4.Реакция с гексацианоферратом (II) уранила.

2СО 3 2 - + (UО 2) 2 (коричневы)-> 2 UO 2 CO 3 (бесцветный) + 4 -

Коричневый раствор гексацианоферрата (II) уранила получают, смешивая раствор ацетата уранила (CH 3 COO) 2 UO 2 с раствором гексацианоферрата (II) калия:

2(СН 3 СОО) 2 ГО 2 + K 4 -> (UO 2) 2 + 4 СН 3 СООК

К полученному раствору прибавляют по каплям раствор Na 2 CO 3 или К 2 СО 3 при перемешивании до исчезновения коричневой окраски.

5.Раздельное открытие карбонат - ионов и гидрокарбонат - ионов реакциями с катионами кальция и с аммиаком.

Если в растворе одновременно присутствуют карбонат - ионы и гидрокарбонат - ионы, то каждый из них можно открыть раздельно.

Для этого вначале к анализируемому раствору прибавляют избыток раствора СаС1 2 . При этом СОз 2 - осаждаются в виде СаСО 3:

СОз 2 - + Са 2+ = СаСО 3

Гидрокарбонат - ионы остаются в растворе, так как Са(НСО 3) 2 растворами в воде. Осадок отделяют от раствора и к последнему добавляют раствор аммиака. НСО 2 - -анионы с аммиаком и катионами кальция дают снова осадок СаСО 3: НСО з - + Са 2+ + NH 3 -> СаСОз + NH 4 +

6. Другие реакции карбонат - иона.

Карбонат - ионы при реакции с хлоридом железа (III) FeCl 3 образуют бурый осадок Fe(OH)CO 3 , с нитратом серебра - белый осадок карбоната серебра Ag 2 CO3, растворимый в НЪТОз и разлагающийся при кипячении в воде до темного осадка Ag 2 O иСО 2: Ag 2 CO 3 -> Ag 2 O + СО 2

Аналитические реакции ацетат - иона CH 3 COO"

Ацетат - ион СН 3 СОО- - анион слабой одноосновной уксусной кислоты СН 3 СООН: в водных растворах бесцветен, подвергается гидролизу, не обладает окислительно -восстановительными свойствами; довольно эффективный лиганд и образует устойчивые ацетатные комплексы с катионами многих металлов. При реакциях со спиртами в кислой среде дает сложные эфиры.

Ацетаты аммония, щелочных и большинства других металлов хорошо растворяется в воде. Ацетаты серебра CH 3 COOAg и ртути (I) менее ацетатов других металлов растворимы в воде.

1.Реакция с хлоридом железа (III) (фармакопейная).

При рН = 5-8 ацетат - ион с катионами Fe(III) образует растворимый темно - красный (цвета крепкого.чая) ацетат или оксиацетат железа (III).

В водном растворе он частично гидролизуется; подкисление раствора минеральными кислотами подавляет гидролиз и приводит к исчезновению красной окраски раствора.

3 СНзСООН + Fe --> (CH 3 COO) 3 Fe + 3 Н +

При кипячении из раствора выпадает красно-бурый осадок основного ацетата железа (III):

(CH 3 COO) 3 Fe + 2 Н 2 О <- Fe(OH) 2 CH 3 COO + 2 СН 3 СООН

В зависимости от соотношений концентраций железа (III) и ацетат - ионов состав осадка может изменяться и отвечать, например, формулам: Fe ОН (СН 3 СОО) 2 , Fe 3 (OH) 2 O 3 (CH 3 COO), Fe 3 О (ОН)(СН 3 СОО) 6 или Fe 3 (OH) 2 (СН 3 СОО) 7 .

Проведению реакции мешают анионы СО 3 2 -, SO 3 "-, РО 4 3 -, 4 , образующие осадки с железом (III), а также анионы SCN- (дающие красные комплексы с катионами Fe 3+), иодид - ион Г,окисляющийся до йода 1 2 , придающего раствору желтую окраску.

2.Реакция с серной кислотой.

Ацетат - ион в сильно кислой среде переходит в слабую уксусную кислоту, пары которой имеют характерный запах уксуса:

СН 3 СОО- + Н + <- СН 3 СООН

Проведению реакции мешают анионы NO 2 \ S 2 -, SO 3 2 -, S 2 O 3 2 -, также выделяющие в среде концентрированной H 2 SO4 газообразные продукты с характерным запахом.

3.Реакция образования уксусноэтилового эфира (фармакопейная).

Реакцию проводят в сернокислой среде. С этанолом:

СН 3 СОО- + Н + -- СН 3 СООН СН 3 СООН + С 2 Н 5 ОН = СН 3 СООС 2 Н 4 + Н 2 О

Выделяющийся этилацетат обнаруживают по характерному приятному запаху. Соли серебра катализируют эту реакцию, поэтому при ее проведении рекомендуется добавлять небольшое количество AgNO 3 .

Аналогично при реакции с амиловым спиртом С 5 НцОН образуется также обладающий приятным запахом амилацетат СН 3 СООС 5 Ни (-грушевая-) Ощущается характерный запах этилацетата, усиливающийся при осторожном нагревании смеси.

Аналитические реакции тартрат - иона РОС- СН(ОН) - СН(ОН) - СОСТ. Тартрат- ион - анион слабой двухосновной винной кислоты:

НО-СН-СООН

НО -СН- СООН

Тартрат - ион хорошо растворим в воде. В водных растворах тартрат - ионы бесцветны, подвергаются гидролизу, склонны к комплексообразованию, давая устойчивые тартратные комплексы с катионами многих металлов. Винная кислота образует два ряда солей – средние тартраты, содержащие двух зараядный тартрат – ион СОСН(ОН)СН(ОН)СОО - , и кислые тартраты – гидротартраты, содержащие однозарядный гидротартрат – ион НОООСН(ОН)СН(ОН)СОО - . Гидротартрат калия (-винный камень-) КНС 4 Н 4 О 6 практически не растворм в воде, что используется для открытия катионов калия. Средняя кальциевая соль также мало растворима в воде. Средняя калиевая соль К 2 С 4 Н 4 О 6 хорошо растворяется в воде.

I. Реакция с хлоридом калия (фармакопейная).

С 4 Н 4 О 6 2 - + К + + Н + -> КНС 4 Н 4 О 6 1 (белый)

2. Реакция с резорцином в кислой среде (фармакопейная).

Тартраты при нагревании с резорцином мета - С 6 Н 4 (ОН) 2 в среде концентрированной серной кислоты образуют продукты реакции вишнево - красного цвета.

14) Реакции с аммиачным комплексом серебра. Выпадает черный осадок металлического серебра.

15) Реакция с сульфатом железа (II) и пероксидом водорода.

Прибавление разбавленного водного раствора FeSO 4 и Н 2 О 2 к раствору, содержащему тартраты. приводит к образованию к образованию неустойчивого комплекса железа жатого цвета. Последующая обработка раствором щелочи NaOH приводит к кяншиовению комплекса голубого цвета.

Аналитические реакции оксалат- иона С 2 О 4 2-

Оксалат- ион С 2 О 4 2- - анион двухосновной щавелевой кислоты Н 2 С 2 О 4 средней силы, сравнительно хорошо растворимой в воде. Оксалат- ион в водных растворах бесцветен, частично гидролизуется, сильный восстановитель, эффективный лиганд -образует устойчивые оксалатные комплексы с катионами многих металлов. Оксалаты щелочных металлов, магния и аммония растворяются в воде, а других металлов мало растворимы в воде.

1Реакция с хлоридом бария Ва 2+ + С 2 О 4 2- = ВаС 2 О 4 (белый) Осадок растворяется в минеральных кислотах и в уксусной кислоте (при кипячении). 2. Реакция с хлоридом кальция (фармакопейная): Са 2+ + С 2 О 4 2 - = СаС 2 О 4 (белый)

Осадок растворяется в минеральных кислотах, но не растворяется в уксусной кислоте.

3. Реакция с нитратом серебра.

2 Ag + + С 2 О 4 2 - -> Ag2C2O 4 .|.(творожистый) Проба на растворимость. Осадок делят на 3 части:

а). В первую пробирку с осадком прибавляют по каплям при перемешивании раствор HNO 3 до растворения осадка;

б). Во вторую пробирку с осадком прибавляют по каплям при перемешивании концентрированный раствор аммиака до растворения осадка; в). В третью пробирку с осадком прибавляют 4-5 капель раствора НС1; в пробирке остается белый осадок хлорида серебра:

Ag 2 C 2 O 4 + 2 НС1 -> 2 АС1 (белый) + Н 2 С 2 О 4

4.Реакция с перманганатом калия. Оксалат ионы с КМпО 4 в кислой среде окисляются с выделением СО 2 ; раствор КМпО 4 при этом обесцвечивается вследствие восстановления марганца (VII) до марганца (II):

5 С 2 О 4 2 - + 2 МпО 4 " + 16 Н + -> 10 СО 2 + 2 Мп 2+ + 8 Н 2 О

Разбавленный раствор КМпО 4 . Последний обесцвечивается; наблюдается выделение пузырьков газа - СО 2 .

38 Элементы группы VA

Общая характеристика VA группы Периодической системы. в виде s x p y электронная конфигурацию внешнего энергетического уровня элементов VA группы.

Мышьяк и сурьма имеют разные аллотропные модификации: как с молекулярной, так и с металлической кристаллической решеткой. Однако на основании сравнения устойчивости катионных форм (As 3+ , Sb 3+) мышьяк относят к неметаллам, а сурьму к металлам.

степени окисления устойчивые для элементов VA группы

От азота к висмуту (с уменьшением неметаллических свойств):

w уменьшается устойчивость отрицательной степени окисления (-3) (м. свойства водородных соединений)

w уменьшается устойчивость высшей положительной степени окисления (+5)

w увеличивается устойчивость низкой положительной степени окисления (+3)

Ключевые слова конспекта: углерод, кремний, элементы IVA-группы, свойства элементов, алмаз, графит, карбин, фуллерен.

Элементы IV группы – это углерод, кремний, германий, олово и свинец . Более подробно рассмотрим свойства углерода и кремния. В таблице приведены важнейшие характеристики этих элементов.

Почти во всех своих соединениях, углерод и кремний четырёхвалентны , их атомы находятся в возбуждённом состоянии. Конфигурация валентного слоя атома углерода при возбуждении атома меняется:

Аналогично меняется конфигурация валентного слоя атома кремния:

На внешнем энергетическом уровне атомов углерода и кремния находится 4 неспаренных электрона. Радиус атома кремния больше, на его валентном слое имеются вакантные 3 d –орбитали, это обусловливает отличия в характере связей, которые образуют атомы кремния.

Степени окисления углерода меняются в интервале от –4 до +4.

Характерной особенностью углерода является его способность образовывать цепи: атомы углерода соединяются друг с другом и образуют устойчивые соединения. Аналогичные соединения кремния неустойчивы. Способность углерода к цепеобразованию обусловливает существование огромного числа органических соединений .

К неорганическим соединениям углерода относятся его оксиды, угольная кислота, карбонаты и гидрокарбонаты, карбиды. Остальные соединения углерода являются органическими.

Для углерода–элемента характерна аллотропия , его аллотропными модификациями являются алмаз, графит, карбин, фуллерен . Сейчас известны и другие аллотропные модификации углерода.

Уголь и сажу можно рассматривать как аморфные разновидности графита.

Кремний образует простое вещество – кристаллический кремний . Существует аморфный кремний – порошок белого цвета (без примесей).

Свойства алмаза, графита и кристаллического кремния приведены в таблице.

Причина явных отличий в физических свойствах графита и алмаза обусловлена различным строением кристаллической решётки . В кристалле алмаза каждый атом углерода (исключая те, которые находятся на поверхности кристалла) образует четыре равноценные прочные связи с соседними атомами углерода. Эти связи направлены к вершинам тетраэдра (как в молекуле СН 4). Таким образом, в кристалле алмаза каждый атом углерода окружён четырьмя такими же атомами, располагающимися в вершинах тетраэдра. Симметричность и прочность С–С-связей в кристалле алмаза обусловливают исключительную прочность и отсутствие электронной проводимости.

В кристалле графита каждый атом углерода образует три прочные равноценные связи с соседними атомами углерода в одной плоскости под углом 120°. В этой плоскости образуется слой, состоящий из плоских шестичленных колец.

Кроме того, каждый атом углерода имеет один неспаренный электрон . Эти электроны образуют общую электронную систему. Связь между слоями осуществляется за счёт относительно слабых межмолекулярных сил. Слои расположены один относительно другого таким образом, что атом углерода одного слоя находится над центром шестиугольника другого слоя. Длина связи С–С внутри слоя составляет 0,142 нм, расстояние между слоями – 0,335 нм. В результате связи между слоями гораздо менее прочны, чем связи между атомами внутри слоя. Это обусловливает свойства графита : он мягок, легко расслаивается, имеет серый цвет и металлический блеск, электропроводен и химически более активен, чем алмаз. Модели кристаллических решёток алмаза и графита изображены на рисунке.

Возможно ли превратить графит в алмаз? Такой процесс осуществим в жёстких условиях – при давлении примерно 5000 МПа и при температуре от 1500 °С до 3000 °С в течение нескольких часов в присутствии катализаторов (Ni). Основную массу продукции составляют небольшие кристаллы (от 1 до нескольких мм) и алмазная пыль.

Карбин – аллотропная модификация углерода, в которой атомы углерода образуют линейные цепи типа:

–С≡С–С≡С–С≡С– (α–карбин, полиин) или =С=С=С=С=С=С= (β–карбин, полиен)

Расстояние между этими цепями меньше, чем между слоями графита, за счёт более сильного межмолекулярного взаимодействия.

Карбин представляет собой чёрный порошок, является полупроводником. Химически он более активен, чем графит.

Фуллерен – аллотропная модификация углерода, образованная молекулами С 60 , С 70 или С 84 . На сферической поверхности молекулы С 60 атомы углерода располагаются в вершинах 20 правильных шестиугольников и 12 правильных пятиугольников. Все фуллерены представляют собой замкнутые структуры из атомов углерода. Кристаллы фуллерена относятся к веществам с молекулярным строением.

Кремний. Существует только одна устойчивая аллотропная модификация кремния, кристаллическая решётка которой подобна решётке алмаза. Кремний – твёрдое, тугоплавкое (t ° пл = 1412 °С), очень хрупкое вещество тёмно-серого цвета с металлическим блеском, при стандартных условиях – полупроводник.

Элементы углерод С, кремний Si, германий Ge, олово Sn и сви­нец Рb составляют IVA-группу Периодической системы Д.И. Мен­делеева. Общая электронная формула валентного уровня атомов этих элементов – ns 2 np 2 , преобладающие степени окисления эле­ментов в соединениях +2 и +4. По электроотрицательности эле­менты С и Si относят к неметаллам, a Ge, Sn и Рb – к амфотерным элементам, металлические свойства которых возрастают по мере увеличения порядкового номера. Поэтому в соединениях олова(IV) и свинца(IV) химические связи ковалентны, для свинца(II) и в меньшей степени для олова(II) известны ионные кристаллы. В ряду элементов от С к Рb устойчивость степени окисления +4 уменьшается, а степени окисления +2 –растет. Соединения свинца(IV) – сильные окислители, соединения ос­тальных элементов в степени окисления +2 – сильные восста­новители.

Простые вещества углерод, кремний и германий химически до­вольно инертны и не реагируют с водой и кислотами-неокислителями. Олово и свинец также не реагируют с водой, но под действи­ем кислот-неокислителей переходят в раствор в виде аквакатионов олова(II) и свинца(II). Щелочами углерод в раствор не переводит­ся, кремний переводится с трудом, а германий реагирует со щелочами только в присутствии окислителей. Олово и свинец реагируют с водой в щелочной среде, переходя в гидроксокомплексы олова(II) и свинца(II). Реакционная способность простых веществ IVA-груп-пы усиливается при повышении температуры. Так, при нагревании все они реагируют с металлами и неметаллами, а также с кислота­ми-окислителями (HNO 3 , H 2 SO 4 (конц.) и др.). В частности, концентрированная азотная кислота при нагревании окисляет углерод до СО 2 ; кремний химически ра­створяется в смеси HNO 3 и HF, превраща­ясь в гексафторосиликат водорода H 2 . Разбавленная азотная кислота переводит олово в нитрат олова(II), а концентрированная – в гидратированный оксид олова(IV) SnO 2 · n Н 2 О, называемый β -оловянной кислотой. Свинец под действи­ем горячей азотной кислоты образует нитрат свинца(II), в то время как холодная азотная кислота пассивирует поверхность этого ме­талла (образуется оксидная пленка).

Углерод в виде кокса применяют в металлургии как сильный восстановитель, образующий на воздухе СО и СО 2 . Это позволяет получить свободные Sn и Рb из их оксидов – природного SnO 2 и РbО, получаемого обжигом руд, содержащих сульфид свинца. Крем­ний можно получить магнийтермическим методом из SiO 2 (при избытке магния образуется также силицид Mg 2 Si).

Химия углерода – это главным образом химия органических соединений. Из неорганических производных углерода характер­ны карбиды: солеобразные (такие, как СаС 2 или Al 4 C 3), ковалентные (SiC) и металлоподобные (например, Fe 3 С и WC). Многие со­леобразные карбиды полностью гидролизуются с выделением уг­леводородов (метана, ацетилена и др.).



Углерод образует два оксида: СО и СО 2 . Монооксид углерода используется в пирометаллургии как сильный восстановитель (пе­реводит оксиды металлов в металлы). Для СО характерны также реакции присоединения с образованием карбонильных комплексов, например . Монооксид углерода – несолеобразующий оксид; он ядовит («угарный газ»). Диоксид углерода – кислотный оксид, в водном растворе существует в виде моногидрата СО 2 · Н 2 О и слабой двухосновной угольной кислоты Н 2 СО 3 . Растворимые соли угольной кислоты – карбонаты и гидрокарбонаты – вслед­ствие гидролиза имеют рН > 7.

Кремний образует несколько водородных соединений (силанов), которые отличаются высокой летучестью и реакционной способно­стью (самовоспламеняются на воздухе). Для получения силанов используют взаимодействие силицидов (напри­мер, силицида магния Mg 2 Si) с водой или кислотами.

Кремний в степени окисления +4 входит в состав SiO 2 и весь­ма многочисленных и часто очень сложных по строению и составу силикатных ионов (SiO 4 4– ; Si 2 O 7 6– ; Si 3 O 9 6– ; Si 4 O 11 6– ; Si 4 O 12 8– и др.), элементарным фрагментом которых является тетраэдрическая группа . Диоксид кремния – кислотный оксид, он реагирует со щелочами при сплавлении (образуя полиметаси-ликаты) и в растворе (с образованием ортосиликат-ионов). Из ра­створов силикатов щелочных металлов при действии кислот или диоксида углерода выделяется осадок гидрата диоксида кремния SiO 2 · n Н 2 О, в равновесии с которым в растворе в небольшой кон­центрации всегда находится слабая орто-кремниевая кислота H 4 SiO 4 . Водные растворы силикатов щелочных металлов вслед­ствие гидролиза имеют рН > 7.

Олово и свинец в степени окисления +2 образуют оксиды SnO и РbО. Оксид олова(II) термически неустойчив и разлагается на SnO 2 и Sn. Оксид свинца(II), наоборот, очень устойчив. Он образуется при сгорании свинца на воздухе и встречается в природе. Гидроксиды олова(II) и свинца(II) амфотерны.

Аквакатион олова(II) проявляет сильные кислотные свойства и поэтому устойчив только при рН < 1 в среде хлорной или азотной кислот, анионы которых не обладают заметной склонностью вхо­дить в состав комплексов олова(II) в качестве лигандов. При раз­бавлении таких растворов выпадают осадки основных солей раз­личного состава. Галогениды олова(II) – ковалентные соединения, поэтому при растворении в воде, например, SnCl 2 протекает внача­ле гидратация с образованием , а затем гидролиз до выпадения осадка вещества условного состава SnCl(OH). При наличии избытка хлороводородной кислоты, SnCl 2 нахо­дится в растворе в виде комплекса – . Большинство солей свинца(II) (например, иодид, хлорид, сульфат, хромат, карбонат, сульфид) малорастворимы в воде.

Оксиды олова(IV) и свинца(IV) амфотерны с преобладанием кислотных свойств. Им отвечают полигидраты ЭО 2 · n Н 2 О, пере­ходящие в раствор в виде гидроксокомплексов под действием из­бытка щелочей. Оксид олова(IV) образуется при сгорании олова на воздухе, а оксид свинца(IV) можно получить только при дей­ствии на соединения свинца(II) сильных окислителей (например, гипохлорита кальция).

Ковалентный хлорид олова(IV) полностью гидролизуется водой с выделением SnO 2 , а хлорид свинца(IV) под действием воды рас­падается, выделяя хлор и восстанавливаясь до хлорида свинца(II).

Соединения олова(II) проявляют восстановительные свойства, особенно сильные в щелочной среде, а соединения свинца(IV) – окислительные свойства, особенно сильные в кислой среде. Рас­пространенным соединением свинца является его двойной оксид (Рb 2 II Рb IV)О 4 . Это соединение под действием азотной кислоты рас­падается, причем свинец(II) переходит в раствор в виде катиона, а оксид свинца(IV) выпадает в осадок. Находящийся в двойном ок­сиде свинец(IV) обусловливает сильные окислительные свойства этого соединения.

Сульфиды германия(IV) и олова(IV) в силу амфотерности этих элементов при добавлении избытка сульфида натрия образуют ра­створимые тиосоли, например, Na 2 GeS 3 или Na 2 SnS 3 . Такая же тиосоль олова(IV) может быть получена из сульфида олова(II) SnS при его окислении полисульфидом нат-рия. Тиосоли разрушаются под действием сильных кислот с выделением газообразного H 2 S и осадка GeS 2 или SnS 2 . Сульфид свинца(II) не реагирует с полисуль­фидами, а сульфид свинца(IV) неизвестен.