Получается при нагревании металлической сурьмы с хлором или хлорированием SbCl3. SbCl5 (хлорид сурьмы (V)) – применяется в органическом синтезе

Сурьмяный блеск был известен еще в древности; его применяли для окраски в черный цвет бровей и ресниц. Римляне называли его - stibium. Впоследствии ему было дано название (вероятно, заимствованное с арабского) antimonium, которое в дальнейшем стали применять и к самому металлу, получаемому из руды.
Живший в XV столетии бенедиктинский монах Василий Валентин подробно описал в своей "Триумфальной колеснице антимония" приготовление металлической сурьмы, а также бывшие тогда уже в употреблении ее сплавы, например сплав со свинцом для отливки типографского шрифта, и значительное число препаратов сурьмы.
В иатрохимический период развития химии препараты сурьмы принадлежали к числу самых распространенных средств лечения, среди них и "вечные" пилюли из металлической сурьмы. В качестве рвотного средства применяли вино, выдержанное некоторое время в чашах из сурьмы. В настоящее время медицина использует сурьмяные препараты только в ограниченном количестве.
Однако недавно синтезированные органические соединения, содержащие сурьму, приобрели большое значение как специфические средства от некоторых тропических болезней.

Получение:

Важнейший природный минерал - антимонит, Sb 2 S 3 . Сурьму получают либо сплавлением сульфида с железом (метод вытеснения) Sb 2 S 3 + 3Fe = 2Sb + 3FeS,
либо обжигом сульфида и восстановлением полученной четырехокиси сурьмы углем (метод обжига - восстановления) Sb 2 S 3 + 5O 2 = Sb 2 O 4 + 3SO 2
Sb 2 O 4 + 4C = 2Sb + 4CO.

Физические свойства:

В свободном состоянии сурьма образует серебристо-белые кристаллы, обладающие металлическим блеском и имеющие плотность 6,68 г/см 3 . Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит тепло и электрический ток, чем обычные металлы. Кроме кристаллической сурьмы, известны и другие ее аллотропические видоизменения.

Химические свойства:

На воздухе при комнатной температуре металлическая сурьма устойчива, выше температуры плавления - загорается. С хлором порошкообразная сурьма взаимодействует со вспышкой. С серой, фосфором, мышьяком и со могими металлами сурьма соединяется при сплавлении.
В соляной кислоте и в разбавленой серной кислоте сурьма не растворяется, в горячей концентрированной серной кислоте образует сульфат сурьмы. В азотной кислоте, в зависимости от ее концентрации, сурьма растворяется с образованием оксида сурьмы(III) или (V).
При нагревании с нитратами или хлоратами щелочных металлов порошкообразная сурьма со вспышкой образует соли сурьмяной кислоты.
В соединениях проявляет степени окисления -3, +3 и +5.

Важнейшие соединения:

Оксид сурьмы(III), или сурьмянистый ангидрид, Sb 2 O 3 - типичный амфотерный оксид с некоторым преобладанием основных свойств. Нерастворим, образует минералы. В сильных кислотах, например серной и соляной, оксид сурьмы (III) растворяется с образоваием солей сурьмы (III), в щелочах с образованием солей сурьмянистой H 3 SbO 3 или метасурьмянистой HSbO 2 кислоты. Например:
Sb 2 O 3 + 2NaOH = 2NaSbO 2 + Н 2 О
Оксид сурьмы(V) или сурьмяный ангидрид, Sb 2 O 5 обладает главным образом кислотными свойствами; желтые кристаллы, растворяется в воде, образуя сурьмяную кислоту, пигмент для керамики.
Оксид сурьмы(IV) Sb 2 O 4 образуется при нагревании на воздухе до 800-900° оксида сурьмы(III) или (V). Белый, едва растворимый в воде порошок, при очень сильном нагревании отщепляет кислород с образованием оксида сурьмы(III). Согласно рентгеноструктурным исследованиям, соответствует двойному оксиду сурьмы(III) и (V) или ортоантнмонату трехвалентной сурьмы Sb III Sb V O 4 . Легко восстанавливается углем до металла.
Гидроксид сурьмы(III) , сурьмянистая кислота, получается в виде белого осадка при действии щелочей на соли сурьмы(III):
SbCl 3 + 3NаОН = Sb (OH) 3 +3NaCl
Осадок легко растворяется как в избытке щелочи, так и в кислотах. При стоянии даже в воде легко переходит в кристаллический Sb 2 O 3 .
Сурьмяная кислота , существует в растворе в нескольких формах, например гексагидроксосурьмяная: H. При осаждении получают гель с переменным содержанием воды, при длительном высушивании - нерастворимую метасурьмяную кислоту HSbO 3 . Соли сурьмяной кислоты называются антимонатами.
Стибин , или гидрид сурьмы, SbH 3 - ядовитый газ, образующийся в тех же условиях, что и арсин. При нагревании он еще легче, чем арсин, разлагается на сурьму и водород. Сурьма образует соединения с металлами - антимониды, которые можно рассматривать как продукты замещения водорода в стибине атомами металла. В этих соединениях сурьма, как и в SbH 3 , имеет степень окисления -3. Некоторые из антимонидов, в частности AlSb, GaSb и InSb, обладают полупроводниковыми свойствами и используются в электронной промышленности.
Соли сурьмы (III) , в водном растворе подвергаются гидролизу с образованием основных солей:
SbCl 3 + 2H 2 O = Sb(OH) 2 Cl
Образующаяся основная соль неустойчива и разлагается с отщеплением молекулы воды:
Sb(OH) 2 Cl = SbOCl + H 2 O
В соли SbOCl группа SbO играет роль одновалентного металла; эту группу называют антимонилом. Полученная соль называется или хлоридом антимонила, или оксохлоридом сурьмы.
Пентахлорид сурьмы SbCl 5 дымящая на воздухе жидкость, растворим в воде с гидролизом. Применение: хлорирующий агент, катализатор полимеризации.
Сульфиды сурьмы Sb 2 S 3 и Sb 2 S 5 по свойствам аналогичны сульфидам мышьяка. Они представляют собой вещества оранжево-красного цвета, растворяющиеся в сульфидах щелочных металлов и аммония с образованием тиосолей. Сульфиды сурьмы используются при производстве спичек и в резиновой промышленности, компоненты пиротехнических составов.

Применение:

Сурьму вводят в некоторые сплавы для придания им твердости. Сплав, состоящий из сурьмы, свинца и небольшого количества олова, называется типографским металлом или гартом и служит для изготовления типографского шрифта. Из сплава сурьмы со свинцом (от 5 до 15% Sb) изготовляют пластины свинцовых аккумуляторов, листы и трубы для химической промышленности, подшипники скольжения. Кроме того, сурьму применяют как добавку к германию для придания ему определенных полупроводниковых свойств.
Мировое производство (без СССР) - около 70 тысяч т/год (1977).
Сурьма и ее производные токсичны. ПДК 0,1-0,5 мг/м 3 .

См. также:
С.И. Венецкий О редких и рассеянных. Рассказы о металлах.

2.11.6 SbCl5 (хлорид сурьмы (V)) – применяется в органическом синтезе. Получается при нагревании металлической сурьмы с хлором или хлорированием SbCl3.

Физические и химические свойства. Жидкость лимонно-желтого цвета с неприятным запахом, дымящая на воздухе. Тплавл. 2,8°; Ткип. 140° (разд.); 102º (68 мм рт. ст.); плотность 2,336. Растворяется в НС1 и органических растворителях; с водой образует H3SbO4.

2.11.7 Sb2S3 (Сульфид сурьмы (III)) – встречается в виде минерала антимонита (стибнита, сурьмяного блеска). Применяется для получения металлической сурьмы и ее соединений; в пиротехнике; в спичечном, керамическом и стекольном производствах; в ветеринарии. Получается выплавкой из сурьмяных руд в восстановительной атмосфере при 650-800°; действием H2S на водные растворы галогенидов сурьмы.

Физические и химические свойства. Кристаллическая модификация: Тплавл. 548°; Ткип. 990°; плотность 4,64; растворимость в воде 0,00017 г/100 г (18°). При нагревании на воздухе до 340° образуется Sb2S3. Пары быстро оседают в воздухе.

2.11.8 Sb2S5 (сульфид сурьмы (V)) – применяется при вулканизации и окраске каучука; в производстве спичек; в пиротехнике, ветеринарии. Получается кипячением Sb2S5 или концентрата сурьмяной руды с гидросульфидом натрия или со взвесью серы в растворе NaOH: полученную кристаллизацией смесь натриевых солей сурьмяной и тиосурьмяной кислот разлагают разбавленной H2SО4.

Физические и химические свойства. Аморфный оранжево-красный порошок. При 170° разлагается, переходя в Sb2S3; плотность 4,12. Легко воспламеняется. Нерастворим в воде, растворяется в растворах щелочей и сульфидов щелочных металлов.


2.12 МОЛИБДЕН

Содержание в земной коре около 3·10-4масс., в рудах Мо ассоциируется с шелитом, вольфрамитом, касситеритом, сульфидами Cu и Fe, иногда с бериллом. Встречается в природе в виде минералов, основной из них-молибденит. Применяется в виде чистого Мо и ферромолибдена в производстве сталей и сплавов; как материал для ядерных реакторов; в электро- и радиотехнике; в нагревателях высокотемпературных печей; в реактивных двигателях. Получается при окислительном обжиге молибденовых концентратов (550 – 600°) и восстановлении полученной МоО3.

Физические и химические свойства. Светло-серый металл. Тплавл. 2620º; Ткип. 4800°; плотность 10,2. Компактный Мо устойчив на воздухе. При нагревании до 600° и выше постепенно окисляется до МоО3. Порошкообразный Мо окисляется при более низких температурах, наиболее мелкий самовозгорается на воздухе.

2.12.1 MoO2 (окись молибдена (IV)) – применяется как катализатор в. химической и нефтяной промышленности. Получается при частичном восстановлении МоО3; при умеренном окислении Мо.

Физические и химические свойства. Коричневые (бурые) кристаллы. Плотн.6,44. В вакууме медленно сублимирует при 1100º. В HNO3 окисляется до МоО3.

2.12.2 МоО3 (окись молибдена (VI), молибденовый ангидрид) – встречается в виде высокодисперсного аэрозоля конденсации при плавке легированных сталей и в производстве молибдена. Применяется как катализатор в химической и нефтяной промышленности для получения металлического Мо. Получается при прокаливании молибденовой кислоты или парамолибдата аммония при 450-500° или при окислении металлического Мо.

Физические и химические свойства. Белый порошок с зеленоватым оттенком Ткип. 1155°С; плотность 4,69; выше 650°С сублимируется.

2.12.3 Na2МоО4 (молибдат натрия) – применяется в производстве лаков и красок. Получается сплавлением NaОH с МоО3, .растворением МоО3 в избытке раствора щелочи.

Физические свойства. Бесцветные кристаллы. Тплавл. 687°; плотность 3,28(18º); Растворимость в воде 44,2г/100г (0°);83.7 г/100r (100°).

2.12.4 (NH4)2MoO4 (молибдат аммония) – получается при добавления спирта к сильно аммиачным растворам МоО3.

Физические и химическое свойства. Белые, призмы (под давлением аммиака). Плотность 2,27. Стоек в водных растворах, содержащих избыток NH3. Легко теряет NH3 при 20°.

2.12.5 (NH4)6Mo7O24·4H2O (парамолибдат аммония) – встречается в процессе получения молибдена. Применяется для получения других соединений молибдена; как катализатор в органическом синтезе; в производстве лаков и красок для шерсти и шелка; в производстве микроудобрения и добавок для корма скоту. Получается при выщелачивании NH3 продуктов окислительного обжига концентратов и последующей очистке.

Физические и химические свойства. Бесцветные или слабо-желтые кристаллы. Плотность 2,27. Растворимость в воде 300 г/л (20°), 500 г/л (80-90°). При 110° начинает терять воду.

2.12.6 МоCl5 (хлорид молибдена (V)) – применяется как промежуточный продукт при получении карбонила молибдена. Получается при действии хлора на порошок металлического Мо; при хлорировании МоО3 избытком CCl4.

Физические и химические свойства. Фиолетово-черные кристаллы. Тплавл. 194°; Ткип. 268°; плотность 2,928. Растворим в органических растворителях, Водой гидролизуется.

2.12.7 MoS2 (сульфид молибдена (IV)) – применяется молибденит для получения Мо; чистый MoS2 – как смазка в подшипниках и других истирающихся деталях. Получается сплавлением МоО3 или СаМоО4 с поташом и серой.

Физические и химические свойства. Молибденит - кристаллы серого цвета. Тплавл. 1300° (разл.); плотность 4,8. При 400-600° окисляется до МоО3. Практически нерастворим в воде; растворяется в царской водке и горячих конц. HNO3 и H2SO4.

2.12.8 Мо2С(карбид молибдена (II.) – применяется в производстве сталей; в качестве антикоррозионного, жаропрочного и жаростойкого материала; в качестве восстановителя, раскислителя, катализатора. Получается прокаливанием при высоких температурах смеси Мо или его окисла с углем в атмосфере инертного или восстановительного газа.

Физические и химические свойства. Кристаллический металлоподобный продукт. Тплавл. 2690°; плотность 8,9. Растворяется в горячей смеси HF и HNO3; в горячих растворах или расплавах щелочей в присутствии окислителя.

2.12.9 MoSi2 (силицид молибдена) – применяется как высокотемпературный припой; как нагреватель в электро печах. Получается взаимодействием Мо с Si при температуре выше 1200°.

Физические и химические свойства. Металлоподобное соединение. Тплавл. 2050°; плотность 6,24. Слабо растворяется в кислотах. Разлагается растворами щелочей.


ЗАКЛЮЧЕНИЕ

Из выше перечисленных соединений наиболее токсичными соединениями являются соединения ртути, сурьмы и кобальта. Переработку соединений ртути осуществляют в зависимости от категории отхода, но в некоторых случаях ее консервируют и отправляют на захоронение. Сурьма и кобальт содержаться в шлаках, аккумуляторов и перерабатываются в комплексе со свинцом, вольфрамом и др.

Соединения хрома 6+ наиболее токсичны среди остальных соединений хрома, а металлический хром мало токсичен. Предложено несколько способов по очистке сточных вод гальванических производств, а также существуют способы по переработке хромовых катализаторов. Также передложены способы по переработке из отработанных никель-хромовых катализаторов, вольфрам содержащих отработанных катализаторов. Разработаны и внедрены гидрометаллургические схемы извлечения вольфрама из пылевидных отходов от заточки твердосплавного инструмента.

Сернокислый цинк, отработанные катализаторы, шламы вискозного производства, нашатырные опады не используются из-за отсутствия специализированных мощностей для их переработки, показали возможность переработки отработанных катализаторов (45-70 % цинка, 10-15 % меди, 30-40 % окиси хрома, 10-12 % окиси железа, 10-12 % сульфидной серы) с высоким извлечением цинка и меди по стандартной гидрометаллургической схеме, применяемой на цинковых заводах.

При переработке цинксодержащих железных руд на ряде предприятий черной металлургии при очистке газов доменного и мартеновского производства образуются шламы, которые складируются на больших земельных площадях. Высокое содержание в них цинка и железа (до 13 и 35 % соответственно) делает их ценным сырьем, использование которого в народном хозяйстве требует разработки экономически целесообразных схем комплексной переработки.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Вторичные материальные ресурсы цветной металлургии. Справочник. Экономика, М., 1984.

2. Мазаник В.Н. и др. Получение сухих цинковых белил при перерабоке вторичного медно-цинкового сырья. – Цветные металлы, 1977, №5.

3. Гудкевич В.М. и др. Способы переработки лома свинцовых аккумуляторов. М.: Цветметинформация, 1970.

4. Колодин С.М. Вторичное олово и переработка бедного оловянного сырья. М.: Металлургия, 1970.

5. Основы металлургии. Т. 5. Малые благородные и радиоактивные металлы. Трансурановые элементы. М.: Металлургия, 1979.

6. Химия и технология соединений хрома. Тр. УНИХИМ, Свердловск, 1985, вып.60.

7. Химическая энциклопедия. Т.5.

8. Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Том 3. Неорганические и элементорганические соединения. Под. ред. проф. Н.В. Лазарева. Л. «Химия», 1977.

9. Химическая энциклопедия. Т.2.

10. Вторичные материальные ресурсы нефтеперерабатывающей и нефтехимической промышленности. Справочник. Экономика, М., 1984.

11. Вторичные материальные ресурсы номенклатуры Госснаба СССР. Справочник. Экономика, М., 1987

12. Химия и технология молибдена и вольфрама.Сб тезисов.,1980.

13. Химия и технология производства молибдена.Сб. статей.,1966.

14. Химия и технология соединений марганца.Сб статей.,1975.

15. Химия и технология соединений хрома.Сб статей.,1978.

16. Химия и технология соединений хрома.Сб статей.,1981.

17. Роде Т.В. Кислородные соединения хрома и хромовые катализаторы. М., Изд-во Акад. наук СССР, 1962.

18. Химия и технология хромовых соединений. Сб статей.,1966.

19. Роде Е.Я. Кислородные соединения марганца. Исходные соединения, минералы и руды. М., 1952.

20. Пеньков В.В., Центер Б.И. Основы теории и эксплуатации герметичных никель-кадмиевых аккумуляторов, 1985.

21. Грачев К.Л. Щелочные аккумуляторы, 1951

22. Железо-никелевые аккумуляторы. Информационный сборник. М.,1953.

23. Аккумуляторы. Сб. статей., 1961.

24. Сидоренко Г.И., Ицкова А.И. Никель: гигиенические аспекты окружающей среды. – М.: Медицина, 1980.

25. Левина Э.Н. Общая токсикология металлов. Л., Медицина, Ленинградское отделение, 1972.

26. Брахнова И.Т. Токсичность порошков металлов и их соединений. Киев «Наукова думка», 1971.

27. Окислы марганца (Сравнит. их токсичность, гигиеническое значение и клиника хронического воздействия), 1962.

28. Перельман Ф.М. Кобальт и никель. М.: Наука, 1975.

29. Береговский В.И. Никель и его значение для народного хозяйства. М., Металлургия, 1964.

30. Смирнов В. И., Цейдлер А.А., Худяков И.Ф., Тихонов А.И. Металлургия меди, кобальта и никеля. Часть 2. М.: Металлургия, 1966.

31. Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде. Справочник. – Л.: Химия, 1985.

32. Предельно допустимые концентрации вредных веществ в воздухе и воде. Справочное пособие для выбора и гигиенической оценки методов обезвреживания промышленных отходов. – Л.: Химия, 1975.

72,3; 73,4 °C Т. кип. 218,6; 221; 222,6; 223 °C Мол. теплоёмк. 108 Дж/(моль·К) Энтальпия образования -282,2 кДж/моль Химические свойства Растворимость в воде 920 25 ; 1917 50 ; ∞ 100 г/100 мл Классификация Рег. номер CAS 10025-91-9 PubChem 24814 SMILES

(Cl)Cl]

Рег. номер EC 233-047-2 RTECS CC4900000 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Хлорид сурьмы(III) - бинарное неорганическое соединение сурьмы и хлора с формулой SbCl 3 , бесцветные кристаллы, очень хорошо растворимые в холодной воде.

Получение

  • Действие хлора на металлическую сурьму:
\mathsf{2Sb + 3Cl_2 \ \xrightarrow{}\ 2SbCl_3 }
  • Действием хлористого водорода на триоксид сурьмы :
\mathsf{Sb_2O_3 + 6HCl \ \xrightarrow{60-80^oC}\ 2SbCl_3 + 3H_2O }
  • Действием хлора на триоксид сурьмы :
\mathsf{2Sb_2O_3 + 6Cl_2 \ \xrightarrow{1000^oC}\ 4SbCl_3 + 3O_2 }
  • Действием хлора на сульфид сурьмы :
\mathsf{2Sb_2S_3 + 9Cl_2 \ \xrightarrow{250^oC}\ 4SbCl_3 + 3S_2Cl_2 }

Физические свойства

Хлорид сурьмы(III) образует бесцветные гигроскопичные диамагнитные кристаллы. Вызывает ожоги на коже. Очень хорошо растворимые в воде. Концентрированные водные растворы устойчивы и называются «сурьмяное масло» (едкая, жгучая, ядовитая жидкость). Разбавленные водные растворы подвергаются гидролизу.

Отрывок, характеризующий Хлорид сурьмы(III)

– Какое врать, правда истинная.
– А кабы на мой обычай, я бы его, изловимши, да в землю бы закопал. Да осиновым колом. А то что народу загубил.
– Все одно конец сделаем, не будет ходить, – зевая, сказал старый солдат.
Разговор замолк, солдаты стали укладываться.
– Вишь, звезды то, страсть, так и горят! Скажи, бабы холсты разложили, – сказал солдат, любуясь на Млечный Путь.
– Это, ребята, к урожайному году.
– Дровец то еще надо будет.
– Спину погреешь, а брюха замерзла. Вот чуда.
– О, господи!
– Что толкаешься то, – про тебя одного огонь, что ли? Вишь… развалился.
Из за устанавливающегося молчания послышался храп некоторых заснувших; остальные поворачивались и грелись, изредка переговариваясь. От дальнего, шагов за сто, костра послышался дружный, веселый хохот.
– Вишь, грохочат в пятой роте, – сказал один солдат. – И народу что – страсть!
Один солдат поднялся и пошел к пятой роте.
– То то смеху, – сказал он, возвращаясь. – Два хранцуза пристали. Один мерзлый вовсе, а другой такой куражный, бяда! Песни играет.
– О о? пойти посмотреть… – Несколько солдат направились к пятой роте.

Пятая рота стояла подле самого леса. Огромный костер ярко горел посреди снега, освещая отягченные инеем ветви деревьев.
В середине ночи солдаты пятой роты услыхали в лесу шаги по снегу и хряск сучьев.
– Ребята, ведмедь, – сказал один солдат. Все подняли головы, прислушались, и из леса, в яркий свет костра, выступили две, держащиеся друг за друга, человеческие, странно одетые фигуры.
Это были два прятавшиеся в лесу француза. Хрипло говоря что то на непонятном солдатам языке, они подошли к костру. Один был повыше ростом, в офицерской шляпе, и казался совсем ослабевшим. Подойдя к костру, он хотел сесть, но упал на землю. Другой, маленький, коренастый, обвязанный платком по щекам солдат, был сильнее. Он поднял своего товарища и, указывая на свой рот, говорил что то. Солдаты окружили французов, подстелили больному шинель и обоим принесли каши и водки.
Ослабевший французский офицер был Рамбаль; повязанный платком был его денщик Морель.
Когда Морель выпил водки и доел котелок каши, он вдруг болезненно развеселился и начал не переставая говорить что то не понимавшим его солдатам. Рамбаль отказывался от еды и молча лежал на локте у костра, бессмысленными красными глазами глядя на русских солдат. Изредка он издавал протяжный стон и опять замолкал. Морель, показывая на плечи, внушал солдатам, что это был офицер и что его надо отогреть. Офицер русский, подошедший к костру, послал спросить у полковника, не возьмет ли он к себе отогреть французского офицера; и когда вернулись и сказали, что полковник велел привести офицера, Рамбалю передали, чтобы он шел. Он встал и хотел идти, но пошатнулся и упал бы, если бы подле стоящий солдат не поддержал его.
– Что? Не будешь? – насмешливо подмигнув, сказал один солдат, обращаясь к Рамбалю.
– Э, дурак! Что врешь нескладно! То то мужик, право, мужик, – послышались с разных сторон упреки пошутившему солдату. Рамбаля окружили, подняли двое на руки, перехватившись ими, и понесли в избу. Рамбаль обнял шеи солдат и, когда его понесли, жалобно заговорил:
– Oh, nies braves, oh, mes bons, mes bons amis! Voila des hommes! oh, mes braves, mes bons amis! [О молодцы! О мои добрые, добрые друзья! Вот люди! О мои добрые друзья!] – и, как ребенок, головой склонился на плечо одному солдату.
Между тем Морель сидел на лучшем месте, окруженный солдатами.
Морель, маленький коренастый француз, с воспаленными, слезившимися глазами, обвязанный по бабьи платком сверх фуражки, был одет в женскую шубенку. Он, видимо, захмелев, обнявши рукой солдата, сидевшего подле него, пел хриплым, перерывающимся голосом французскую песню. Солдаты держались за бока, глядя на него.
– Ну ка, ну ка, научи, как? Я живо перейму. Как?.. – говорил шутник песенник, которого обнимал Морель.
Vive Henri Quatre,
Vive ce roi vaillanti –
[Да здравствует Генрих Четвертый!
Да здравствует сей храбрый король!
и т. д. (французская песня) ]
пропел Морель, подмигивая глазом.
Сe diable a quatre…
– Виварика! Виф серувару! сидябляка… – повторил солдат, взмахнув рукой и действительно уловив напев.
– Вишь, ловко! Го го го го го!.. – поднялся с разных сторон грубый, радостный хохот. Морель, сморщившись, смеялся тоже.
– Ну, валяй еще, еще!
Qui eut le triple talent,
De boire, de battre,
Et d"etre un vert galant…
[Имевший тройной талант,
пить, драться
и быть любезником…]
– A ведь тоже складно. Ну, ну, Залетаев!..
– Кю… – с усилием выговорил Залетаев. – Кью ю ю… – вытянул он, старательно оттопырив губы, – летриптала, де бу де ба и детравагала, – пропел он.
– Ай, важно! Вот так хранцуз! ой… го го го го! – Что ж, еще есть хочешь?
– Дай ему каши то; ведь не скоро наестся с голоду то.
Опять ему дали каши; и Морель, посмеиваясь, принялся за третий котелок. Радостные улыбки стояли на всех лицах молодых солдат, смотревших на Мореля. Старые солдаты, считавшие неприличным заниматься такими пустяками, лежали с другой стороны костра, но изредка, приподнимаясь на локте, с улыбкой взглядывали на Мореля.
– Тоже люди, – сказал один из них, уворачиваясь в шинель. – И полынь на своем кореню растет.
– Оо! Господи, господи! Как звездно, страсть! К морозу… – И все затихло.
Звезды, как будто зная, что теперь никто не увидит их, разыгрались в черном небе. То вспыхивая, то потухая, то вздрагивая, они хлопотливо о чем то радостном, но таинственном перешептывались между собой.

Х
Войска французские равномерно таяли в математически правильной прогрессии. И тот переход через Березину, про который так много было писано, была только одна из промежуточных ступеней уничтожения французской армии, а вовсе не решительный эпизод кампании. Ежели про Березину так много писали и пишут, то со стороны французов это произошло только потому, что на Березинском прорванном мосту бедствия, претерпеваемые французской армией прежде равномерно, здесь вдруг сгруппировались в один момент и в одно трагическое зрелище, которое у всех осталось в памяти. Со стороны же русских так много говорили и писали про Березину только потому, что вдали от театра войны, в Петербурге, был составлен план (Пфулем же) поимки в стратегическую западню Наполеона на реке Березине. Все уверились, что все будет на деле точно так, как в плане, и потому настаивали на том, что именно Березинская переправа погубила французов. В сущности же, результаты Березинской переправы были гораздо менее гибельны для французов потерей орудий и пленных, чем Красное, как то показывают цифры.