Патогенные факторы и условия развития заболеваний. Основные факторы патогенности микроорганизмов Факторы колонизации бактерий


Фенотипическим признаком патогенного микроорганизма является его вирулентность , т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулентность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных животных). При этом учитывают вид животных, пол, массу тела, способ заражения, срок гибели.

К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Адгезия является пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность - способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других - кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.

Инвазия. Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.

Агрессия. Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано.

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины.
Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток.

Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК).

Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами.
При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин.

Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.



Чтобы возникла инфекционная болезнь, необходимо наличие возбудителя, обладающего патогенностью вообще и вирулентностью в частности. Одинаковы ли эти понятия? Патогенность микроба - видовой генетический признак, его потенциальная возможность вызвать при благоприятных условиях инфекционный процесс. По этому признаку все существующие микроорганизмы подразделяют на патогенные, условно-патогенные и сапрофиты. Фактически все возбудители инфекционных болезней являются патогенными, но далеко не все из них способны вызвать инфекционную болезнь, чтобы это произошло, микроорганизм, хотя и принадлежащий к патогенному виду, должен обладать вирулентностью. Поэтому нельзя ставить знак равенства между патогенностью и вирулентностью.

Микроорганизм считается вирулентным, если он при внедрении в организм животного, даже в исключительно малых дозах, приводит к развитию инфекционного процесса. Никто не сомневается в патогенности сибиреязвенной бациллы, между тем среди культур этого микроба изредка, но встречаются авирулентные штаммы, не способные вызвать заболевания у овец и даже кроликов. Бактерии рожи свиней принадлежат к патогенному виду, но немало разновидностей этого микроба было выделено из организма совершенно здоровых свиней, индеек, рыб.

Свойства патогенности и вирулентности

ПАТОГЕННОСТЬ (Pathogenicity) - видовое свойство возбудителя, характеризующее его способность размножаться и вызывать те или иные патологические изменения в организме без дополнительной адаптации. В вирусологии понятие патогенность относится к типу вируса и означает, что данное свойство представлено у всех штаммов (изолятов) этого типа. Понятию патогенность не противоречит тот факт, что высокоаттенуированные штаммы практически утратили многие отличительные черты своего типа, т. е. оказались лишенными способности к патологическому воздействию на организм хозяина. Патогенность обычно описывается только качественными признаками

ВИРУЛЕНТНОСТЬ - это степень патогенности конкретного микроорганизма. Ее можно измерить. За единицу измерения вирулентности условно приняты летальная и инфицирующая дозы. Минимальная смертельная доза - DLM (Dosis letalis minima) - это наименьшее количество живых микробов или их токсинов, вызывающее за определенный срок гибель большинства взятых в опыт животных определенного вида. Но поскольку индивидуальная чувствительность животных к патогенному микробу (токсину) различна, то была введена безусловно смертельная доза - DCL (Dosis certa letalis), вызывающая гибель 100 % зараженных животных. Наиболее точной является средняя летальная доза - LD 50, т. е. наименьшая доза микробов (токсинов), убивающая половину животных в опыте. Для установления летальной дозы следует принимать во внимание способ введения возбудителя, а также массу и возраст подопытных животных, например, белые мыши - 16-18 г, морские свинки - 350 г, кролики - 2 кг. Таким же образом определяют инфицирующую дозу (ID), т. е. количество микробов или их токсинов, которое вызывает соответствующую инфекционную болезнь.

Высоковирулентные микроорганизмы способны вызвать заболевание животных или человека в самых малых дозах. Так, например, известно, что 2-3 микобактерии туберкулеза при введении в трахею вызывают у морской свинки туберкулез со смертельным исходом. Вирулентные штаммы сибиреязвенной бациллы в количестве 1-2 клеток могут вызвать смерть у морской свинки, белой мыши и даже крупного животного.

У одного и того же микроорганизма вирулентность может значительно колебаться. Это зависит от ряда биологических, физических и химических факторов, воздействующих на микроорганизм. Вирулентность микроорганизма можно повысить или понизить искусственными приемами.

Длительное выращивание культур вне организма на обычных питательных средах, выращивание культур при максимальной температуре (опыты Л. Пастера и Л. С. Банковского), добавление к культурам антисептических веществ (двухромовокислый калий, карболовая кислота, щелочь, сулема, желчь и т. д.) ослабляют вирулентность микроорганизмов.

Пассирование (последовательное проведение) возбудителя какой-либо инфекционной болезни через определенный вид животного от зараженного к здоровому, например возбудителя рожи свиней через организм кролика, ослабляет вирулентность для свиней, но усиливает ее для самих кроликов. Действие бактериофага (биологический фактор) может привести к ослаблению вирулентности микроорганизмов.

Усиление вирулентности под действием протеолитических ферментов можно наблюдать у Cl. perfringens при естественной ассоциации с возбудителями гниения (например, сарцинами) или при искусственном воздействии ферментом животного происхождения (например, трипсином).

Связан этот эффект со способностью протеаз активизировать протоксины, т. е. предшественники эпсилон-токсина типов В и D и йота-токсина типа Е Cl. perfringens .

Вирулентность микроорганизмов связана с токсигенностью и инвазивностью.

Токсигенность (греч. toxicum - яд и лат. genus - происхождение) - способность микроба образовывать токсины, которые вредно действуют на макроорганизм, путем изменения его метаболических функций.

Инвазивность (лат. invasio - нашествие, нападение) - способность микроба преодолевать защитные барьеры организма, проникать в органы, ткани и полости, размножаться в них и подавлять защитные средства макроорганизма. Инвазионные свойства патогенных бактерий обеспечиваются за счет микробных ферментов (гиалуронидаза), капсул и других химических компонентов микробов.

Основные факторы вирулентности микробов. Под факторами вирулентности понимают приспособительные механизмы возбудителей инфекционных болезней к меняющимся условиям макроорганизма, синтезируемые в виде специализированных структурных или функциональных молекул, при помощи которых они участвуют в осуществлении» инфекционного процесса. По функциональному значению их разделяют на четыре группы: 1) микробные ферменты, деполимеризующие структуры, препятствующие проникновению и распространению возбудителя в макроорганизме; 2) поверхностные структуры бактерий, способствующие закреплению их в макроорганизме; 3) поверхностные структуры бактерий, обладающие антифагоцитарным действием; 4) факторы патогенности с токсической функцией.

К первой группе относятся:

Гиалуропидаза. Действие этого фермента в основном сводится к повышению проницаемости тканей. Кожа, подкожная клетчатка и межмышечная клетчатка содержат мукополисахариды и гиа-луроновую кислоту, которые замедляют проникновение через эти ткани чужеродных веществ, даже в жидком состоянии. Гиалу-ронидаза способна расщеплять мукополисахариды и гиалуроновую кислоту, в результате чего повышается проницаемость тканей и микроорганизм свободно продвигается вглубьлежащие ткани и органы животного организма. Синтезируют этот фермент бру-целлы, гемолитические стрептококки, клостридии и другие микроорганизмы.

Фибринолизии. Некоторые штаммы гемолитического стрептококка, стафилококков, иерсиний синтезируют фибринолизин, который разжижает плотные сгустки крови (фибрин). Гиалуронидаза и фибринолизин увеличивают способность патогенных микробов генерализировать процесс и устраняют химико-механическис препятствия на пути внедрения микробов в глубь тканей.

Нейрамипидаза отщепляет от различных углеводов связанные с ними гликозидной связью концевые сиаловыс кислоты, которые деполимеризуют соответствующие поверхностные структуры эпителиальных и других клеток организма, разжижают носовой секрет и муцинозный слой кишечника. Синтезируется она пастсреллами, иерсиниями, некоторыми клостридиями, стрепто-, диплококками, вибрионами др.

ДНК-азы (дезоксирибонуклеаза) деполимеризуют нуклеиновую кислоту, обычно появляющуюся при разрушении лейкоцитов в воспалительном очаге на месте внедрения микробов. Продуцируется фермент стафилококками, стрептококками, клостридиями и некоторыми другими микробами.

Коллагечаза гидролизует входящие в состав коллагена, желатина и других соединений пептиды, содержащие пролин. В результате расщепления коллагеновых структур наступает расплавление по мышечной ткани. Вырабатывают фермент клостридии злокачественного отека, особенно сильно Clostridium histolyticum .

Коагулаза. Цитратная или оксалатная кровяная плазма человека и животных быстро свертывается вирулентными штаммами золотистого стафилококка, таким же свойством обладают некоторые штаммы кишечной палочки и сенной бациллы. Свертывание цитратной или оксалатной крови происходит вследствие выработки перечисленными микроорганизмами фермента коагулазы.

Вторая группа включает в себя патогенные микроорганизмы, у которых обнаружены ворсинки, жгутики, пили, рибито-тейхоевые и липотейхоевые кислоты, липопротеиды и липополиса-хариды, способствующие закреплению их в макроорганизме. Это явление названо адгезией, т. е. способностью микроба адсорбироваться (прилипать) на чувствительных клетках. Адгезивность хорошо выражена у эшерихий (штаммы К-88, К-99), которые продуцируют соответствующие белковые антигены, позволяющие бактериям прикрепляться к слизистой тонких кишок, накапливаться здесь в больших количествах, продуцировать токсины и таким образом поражать макроорганизм.

Третья группа включает в себя бактерии, содержащие поверхностные структуры, обладающие антифагоцитарным действием. К ним относятся А-протеин золотистого стафилококка, М-протеин пи-огенного стрептококка, vi -антиген сальмонелл, липиды корд-фактора микобактерий туберкулеза и др. Механизм антифагоцитарного действия этих микробов объясняют не токсигенностью, а способностью блокировать антитела (опсонины) или отдельные фракции комплемента (например, Сз), способствующие фагоцитозу.

Бациллы сибирской язвы, пневмококки могут синтезировать выраженную капсулу, хорошо заметную в мазках-отпечатках, приготовленных из свежего патологического материала или из культур, выращенных на сывороточных средах. Доказано, что капсульное вещество - полисахарида у пневмококков, полипептид d -глутаминовой кислоты у сибиреязвенной бациллы - не простая механическая преграда для бактерицидных соков организма, химических, лекарственных веществ, антибиотиков; капсула и ее вещество защищают бактерии от переваривания. Капсула подавляет фагоцитоз бактерий, обеспечивает их устойчивость к антителам и усиливает их инвазионные свойства. Например, капсулообразующие сибиреязвенные бациллы не подвергаются фагоцитозу, в то время как бескапсульные варианты легко фагоцитируются.

Данный фактор патогенности сибиреязвенного микроба настолько важен, что его используют в качестве критерия для оценки степени вирулентности возбудителя сибирской язвы, а в медицинской и ветеринарной практике успешно используют вакцины (СТИ и ВГНКИ) против этой болезни, представляющие собой взвесь жизнеспособных спор бескапсульных штаммов сибиреязвенных бацилл.

К этой же группе факторов патогенности можно отнести нетоксичные неантигенные капсульные структуры некоторых стрептококков- (например, группы А), построенные из гиалуроновой кислоты. Ввиду общности с межклеточным веществом макроорганизма они, вероятно, не распознаются хозяином и остаются нефагоцитированными.

Четвертая группа включает в себя токсины. Среди токсинов микробного происхождения различают экзо- и эндотоксины. Экзотоксины - высокоактивные яды, выделяемые микроорганизмом на протяжении его жизни в качестве продуктов обмена в окружающую среду (организм животного, пробирка с культурой микроба). Эндотоксины - менее ядовитые по сравнению с экзотоксинами вещества, образующиеся в результате распада микробной клетки. Следовательно, эндотоксины представляют собой фрагменты или отдельные химические компоненты микробных клеток.

Экзотоксины в основном образуют грамположительные микроорганизмы (возбудители ботулизма, столбняка, газовой инфекции и др.), а эндотоксины образуют клетки грамотрицательных микробов (сальмонеллы, кишечная палочка, протей и др.).

Факторы патогенности - это материаль­ные носители, обуславливающие способность микробов вызывать инфекционный процесс. Изучение факторов патогенности позволяет понять, чем патогенный микроб отличается от непатогенного и чем восприимчивый мак­роорганизм отличается от невосприимчивого. В отличие от сапрофитов, патогенные микро­бы для того, чтобы преодолеть естественные барьеры макроорганизма и существовать в нем, должны обладать способностью к адгезии и колонизации, инвазивностью, т. е. способ­ностью к преодолению защитных барьеров макроорганизма, проникновению во внут­реннюю среду макроорганизма за пределы входных ворот инфекции и распростране­нию в его тканях, проникновению в клетки макроорганизма (пенетрация), а также обла­дать агрессивностью, т. е. способностью по­давлять неспецифическую и специфическую реактивность организма за счет агрессинов, интерферирующих с защитными факторами макроорганизма, в том числе противостоять фагоцитозу. В настоящее время термин «инвазивность», подразумевающий способность сохраняться в макроорганизме и размножаться в нем, при­меняют и в отношении внеклеточных парази­тов, таких как стафилококки, стрептококки, псевдомонады и т. д. Кроме того, патогенные микробы должны оказывать токсическое воз­действие на макроорганизм. Каждую из этих функций патогенные микробы реализуют с помощью специализированных структур, со­стоящих из макромолекул, которые являются материальными носителями патогенности, обуславливающими специфичность инфек­ционного процесса. В основе специфичности лежит механизм биологического распознава­ния по принципу комплемента

1. белок наружной мембраны инвазин – обеспечивает резистентность к фагоцитозу;

2. фермент супероксиддисмутаза – антифагоцитарная активность сальмонелл;

3. эндотоксин – развитие лихорадки;

4. энтеротоксин – обладает гомологией с холерным энтеротоксином.

У человека сальмонеллы могут вызывать две группы заболеваний: 1) антропонозные – брюшной тиф и паратиф А и В; 2) зооантропонозные – сальмонеллезы.

Возбудителями брюшного тифа являются S. typhi, паратифа А – S. paratyphi A, а паратифа В - S. paratyphi B.

Основные клинические проявления: циклическое течение, поражение лимфатического аппарата тонкого кишечника, лихорадка (повышение температуры к 4-7 суткам), интоксикация, появление розеолезной сыпи, живот вздут вследствие накопления в кишках большого количества газов, бред, галлюцинации, падение кровяного давления, коллапс, язык на спинке обложен грязновато-белым налетом, по краям и с кончика чистый, по боковой поверхности на языке заметны отпечатки зубов. Осложнение – перфорация тонкой кишки и кишечное кровотечение. Иммунитет после перенесенного заболевания напряженный и длительный.

Источник инфекции: больной человек и бактерионоситель, которые выделяют возбудителя во внешнюю среду с испражнениями, мочой, слюной. Пути передачи: водный, контактный, пищевой (молоко, сметана, творог, мясной фарш).

Лабораторная диагностика. Материал для исследованияопределяется характером инфекционного процесса:

2. испражнения

4. дуоденальное содержимое

6. труп (кусочки паренхиматозных органов кровь из сердца, желчь, содержимое и отрезок тонкой кишки).

Методы лабораторной диагностики.1 неделя заболевания и в течение всего лихорадочного периода – метод гемокультуры – посев крови в желчный бульон с последующим пересевом на плотные питательные среды. С конца второй недели заболевания проводят бактериологический метод исследования испражнений, дуоденального содержимого. Бактериологическое исследование желчи дает лучшие результаты. Начиная со второй недели заболевания проводятся серологические исследования. В крови болных брюшным тифом и паратифов с 8-10 дней болезни появляются АТ к О- и Н- антигенам, которые можно обнаружить с помощью реакции агглютинации (РА) Видаля и реакции пассивной Vi-гемагглютинации. Диагностическим титром у непривитых людей считают титр агглютинации 1: 100 при соответствующих клинических показаниях. У ранее привитых больных титр Н-АТ 1:200 не является надежным диагностическим признаком. У таких больных диагностический титр должен быть не менее 1:400. Подтверждением активно текущего инфекционного процесса является нарастание титра О-АТ в период болезни. К исходу болезни титр О-АТ понижается, но накапливаются Н- агглютинины. Для выявления хронического носительства бактерий брюшного тифа используют РНГА с эритроцитарным Vi диагностикумом. Диагностическое значение имеет титр 1:40 и выше. Всех здоровых людей с титром 1:80 относят к подозрительным на носительство брюшного тифа.

Лечение. Этиотропная антибиотикотерапия с учетом чувствительности возбудителя.

Профилактика. Для специфической профилактики брюшного тифа используют обогащенную Vi- антигеном вакцину, по эпидемическим показаниям назначают сухой брюшнотифозный бактериофаг. Неспецифическая профилактика включает: санитарно-бактериологический контроль за системами водоснабжения, соблюдение санитарно-гигиенических правил при приготовлении пищи, выявление бактерионосителей среди работников пищеблоков, торговли, своевременное выявление и изоляция больных.

Возбудителями сальмонеллезовявляются многочисленные серовары сальмонелл патогенные для человека и животных. Чаще всего – это S. typhimurium, S. enteritidis, S. heidelberg, S. newport, S. dublin, S. choleraesuis. На территории России доминирует в качестве возбудителя сальмонеллезов - S. enteritidis.

Основной резервуар инфекции – сельскохозяйственные животные, птица (водоплавающая) и куры. Пути передачи: водный, алиментарный. Факторы передачи: мясо, молоко, яйца, субпродукты.

Сальмонеллезная инфекция обычно протекает с клиникой ПТИ (гастроэнтерит). Однако может протекать наряду с кишечной формой и внекишечные: менингит, плеврит, эндокардит, артрит, абсцессы печени, селезенки, пиелонефрит. Это связано с увеличением числа лиц с иммунодефицитом. При снижении иммунного статуса сальмонеллы могут прорывать лимфатический барьер кишечника и проникать в кровь. Развивается бактеремия и становятся возможными внекишечные поражения.

За последние годы сформировались госпитальные штаммы, в частности, S. typhimurium. Они отличаются от остальных клиникой, эпидемиологией, патогенезом. Госпитальные штаммы вызывают вспышки внутрибольничных инфекций, в основном, среди новорожденных и ослабленных детей. Эти штаммы характеризуются множественной лекарственной устойчивостью, детерминированной R плазмидой.

Лабораторная диагностика. Материалом для исследования являются:

2. испражнения

3. рвотные массы и промывные воды желудка

4. дуоденальное содержимое

Методы лабораторной диагностики: 1) бактериологический, 2) серологический (РНГА).

Лечение.Применяется патогенетическая терапия, направленная на нормализацию водно-солевого обмена. При генерализованных формах – этиотропная антибиотикотерапия.

Профилактика. Неспецифическая: проведение ветеринарно-санитарных мероприятий, направленных на предупреждение распространения возбудителей среди сельскохозяйственных животных и птицы, а также соблюдение санитарно-гигиенических правил при убое на мясоперерабатывающих предприятиях, при хранении мяса и мясных продуктов, приготовления пищи, достаточная термическая обработка пищевых продуктов.

Специфическая профилактика сальмонеллеза у сельскохозяйственных животных и птицы.

Шигеллы.

Возбудители дизентерии относятся к семейству Enterobacteriaceae, роду Shigella, который включает 4 вида, отличающихся по биохимическим свойствам и антигенной структуре: S. dysenteriae, S. flexneri, S. boydii, S. sonnei.

Шигеллы – грамотрицательные, неподвижные палочки, спор и капсул не образуют. На плотных питательных средах Плоскирева, Левина, Эндо образуют мелкие гладкие, блестящие, полупрозрачные колонии. На жидких – диффузное помутнение.

Основные биохимические свойства: отсутствие газообразования при ферментации глюкозы, отсутствие продукции сероводорода, отсутствие ферментации лактозы в течение 48 часов.

Выживаемость во внешней среде. Шигеллы хорошо переносят высушивание, низкие температуры, при 60 0 С погибают через 30 мин, при 100 0 С – мгновенно.

Антигенная структура.Шигеллы имеют соматический О-антиген, в зависимости от строения которого происходит их подразделение на серовары. S. sonnei обладает К-антигеном.

Факторы патогенности.

  1. плазмида инвазии – обеспечивает процесс инвазии слизистой толстого кишечника;
  2. токсины – шига и шигаподобные – токсин попадает в кровь и наряду с эндотелием подслизистой поражает гломерулы почки, вследствие, помимо кровавого поноса развивается гемолитический уремический синдром с развитием почечной недостаточности;

Эпидемиология.Источник инфекции – больные люди и бактерионосители.

Механизм передачи. Фекально-оральный. Путь передачи: S. dysenteriaeконтактно-бытовой, S. flexneriводный, S. sonneiалиментарный.

Шигеллезы распространены повсеместно. Чаще всего возникают в виде вспышек алиментарного и водного характера.

Клинические проявления. Шигеллы, минуя желудок и тонкий кишечник, прикрепляются к рецепторам колоноцитов и проникают внутрь с помощью белка наружной мембраны. Гибель клеток приводит к образованию эрозий и язв, окруженных перифокальным воспалением. Бактериальная дизентерия характеризуетсяпоражением слизистой и ткани толстого кишечника и характерными симптомами со стороны желудочно-кишечного тракта: тенезмы, частый жидкий стул с примесями слизи и крови. Осложнением шигеллезов может быть развитие кишечного дисбактериоза.

Микробиологическая диагностика. Материалом для исследования служат испражнения. Для посева отбираются гнойно-слизисто-кровяные образования из средней порции кала.

К основным методам лабораторной диагностики относятся: 1) бактериологический; 2) серологический (РПГА)- определение в сыворотке крови антител.

Этиотропная терапия: в среднетяжелой и тяжелой степени заболевания назначаются антибиотики с учетом чувствительности возбудителя.

Специфическая профилактика. Дизентерийный бактериофаг (применяется в очагах инфекции).

Эшерихии.

Возбудитель эшерихиозов относится к семейству Enterobacteriaceae, роду Escherichia, который включает несколько видов. В патологии человека имеет значение только вид E. сoli.

Эшерихии грамотрицательные палочки среднего размера, подвижны за счет перитрихиально расположенных жгутиков. Не образуют спор, некоторые штаммы имеют микрокапсулу. На питательной среде Эндо образуют колонии малинового цвета с металлическим блеском, в жидкой среде вызывают диффузное помутнение. Обладают высокой ферментативной активностью. Расщепляют углеводороды с образованием кислоты и газа (имеются безгазовые варианты). Ферментируют лактозу (встречаются лактозонегативные варианты).К основным биохимическим свойствам относятся: продукция кислоты и газа при ферментации глюкозы; ферментация лактозы; неспособность образовывать сероводород; продукция индола.

Антигенная структура. E. Coliобладает сложной антигенной структурой. Имеет соматический О-антиген, определяющий серогруппу. Известно около 171 разновидностей.О-антигена. Поверхностный К-антиген может быть представлен 3 антигенами: А, В и L, отличающихся по чувствительности к температуре и химическим веществам. У эшерихий встречается более 97 разновидностей К-антигена. Типоспецифический Н-антиген определяет серовар, которых насчитывается более 57.

Антигенная структура обозначается формулами серогруппы как О:Н, серовара – О:К:Н, например: О12:В6:Н2.

Различают условно-патогенные и патогенные (диареегенные) эшерихии.

Условно-патогенные эшерихии входят у человека в состав нормальной микрофлоры кишечника и влагалища. Заболевания, которые вызывают УП кишечные палочки называют парентеральные эшерихиозы. При снижении иммунологической реактивности кишечная палочка может покидать место своего постоянного обитания (кишечник) и гематогенно либо лимфогенно распространяться, вызывая гнойно-воспалительные процессы различной локализации. УП кишечные палочки выявляются при циститах, пиелитах, холециститах, уретритах, менингитах, сепсисе, пневмониях, тонзиллитах, аппендицитах, вызывают пищевые токсикоинфекции. 80% менингитов новорожденных вызваны E.сoli, которой новорожденный заражается через родовые пути. Основным фактором патогенности УП кишечных палочек является образование эндотоксина. Из условно-патогенных кишечных палочек могут формироваться полирезистентные к антибиотикам штаммы за счет R- плазмид, которые становятся ВБИ.

Патогенные E.сoli являются возбудителями кишечного эшерихиоза, ОКИ. Они получили название диареегенных. Они подразделяются на 4 основные категории, исходя из наличия у них факторов патогенности.

1. ЭТКП – энтеротоксигенные кишечные палочки – возбудители холероподобных заболеваний. Патогенность определяется выработкой термолабильного структурно и функционально связанного с холерным токсином и термостабильного энтеротоксина, которые нарушают водно-солевой обмен в кишечнике, приводя к развитию водянистой диареи;

2. ЭИКП – энтероинвазивные кишечные палочки внедрятся и размножаются в эпителиальных клетках слизистой стенки толстого кишечника, вызывая их деструкцию. Следствием этого является развитие дизентериеподобного заболевания;

3. ЭПКП – энтеропатогенные кишечные палочки вызывают диарею у детей первого года жизни. Продуцируют шигаподобные токсины, поражают тонкий кишечник и вызывают колиэнтериты. Заболевание часто протекает как ВБИ в отделениях новорожденных и грудных детей.

4. ЭГКП – способны вызывать у людей кровавый понос (геморрагический колит) с последующим осложнением в виде гемолитического уремического синдрома. Источником инфекции являются крупный рогатый скот и овцы. Основной путь передачи – алиментарный через мясо, прошедшее недостаточную термическую обработку. Поражаются слепая, восходящая и поперечная толстые кишки. Патогеннсть определяется с выработкой шигаподобных токсинов, синтезом гемолизина

Иммунитет. Парентеральные эшерихиозы чаще возникают на фоне иммунодефицитных состояний. Надежный иммунитет к ним не вырабатывается. При кишечных эшерихиозах наблюдается выработка местного иммунитета, опосредованного секреторным Ig A.

Лабораторная диагностика. Основной метод – бактериологический.

Специфическая профилактика не разработана.

Неспецифическая профилактика сводится к соблюдению санитарно-гигиенических правил, санитарному контролю за источником водоснабжения, пищевыми предприятиями, продуктами питания.

Для этиотропной терапии используют антибиотики.

Холерный вибрион.

Холера – особо опасная карантинная болезнь, вызываемая Vibrio cholerae, серогрупп О1 и О139 , характеризующаяся токсическим поражением тонкого кишечника, нарушением водно-солевого баланса и высокой летальностью.

Возбудитель холеры относится к семейству Vibrionaceae, роду Vibrio, виду Vibrio cholerae.

Холерный вибрион – небольшая изогнутая палочка, очень подвижная за счет полярного жгутика. Спор, капсул не образует. Грамотрицателен. Аэроб или факультативный анаэроб. Относится к галофильным микроорганизмам, поэтому хорошо растет при рН 8,5-9,0. Элективные среды для него – 1% пептонная вода и щелочной агар. На пептонной воде уже через 6-8 часов роста образуется пленка, на щелочном агаре через 12 часов формируются гладкие, прозрачные с голубоватым оттенком колонии.

Биохимические свойства: сбраживает до кислоты глюкозу, сахарозу, не сбраживают арабинозу, рамнозу, дульцит. Для определения рода используют аминокислоты: аргинин, орнитин, лизин.

По Хейбергу, все вибрионы делятся на 6 групп по отношению к сахарам (манноза, сахароза, арабиноза). Холерный вибрион относится к I группе Хейберга и разлагает маннозу и сахарозу, но не разлагает арабинозу.

Антигенная структура . Холерные вибрионы обладают термостабильным О-антигенами и термолабильными Н-антигенами. По структуре О-АГ выделяют более 150 серогрупп, определяемых в реакциях агглютинации. О-антиген Vibrio cholerae О1 состоит из трех компонентов, в зависимости от сочетании которых различают три серовара: Огава, Инаба, Гикошима. Помимо сероваров внутри Vibrio cholerae О1 выделяют два биовара: классический и эль-тор. Они различаются чувствительностью к специфическим бактериофагам, полимиксину, способностью агглютинировать куриные эритроциты и вызывать гемолиз.

Факторы патогенности:

1. способность адгезировать и колонизовать кишечник;

2. наличие ферментов (муциназы, протеазы, нейраминидазы,

лецитоветилазы) – способность к инвазии возбудителя;

  1. продукция экзоэнтеротоксина – определяет основное клиническое проявление холеры – профузный понос.

Эпидемиология . Источник инфекции больной человек и вибрионоситель. Резервуаром инфекции является водная среда. Механизм передачи – фекально-оральный. Путь передачи – водный, пищевой, реже контактно-бытовой. Факторами передачи могут служить пресная и морская вода, пищевые продукты (молочные, овощи, фрукты, гидробионты).

Клинические проявления. Заболевание обычно начинается с явлений энтерита. Вначале испражнения сохраняют каловый характер и запах, но вскоре приобретает вид белесоватой водянистой жидкости с плавающими хлопьями – рисового отвара. Частота стула в сутки различная, но примерно у 1/3 больных от 3 до 10 раз. Появление рвоты – переход в следующую фазу болезни – холерный гастроэнтерит. Рвота обычно обильная, водянистая. Вследствие потери большого количества жидкости у больного нарастает обезвоживание, появляются судороги, особенно пальцев рук и ног. Кожные покровы цианотичные, на ощупь холодные. Тургор кожи снижается: кожа легко собирается в нерасправляющуюся складку. Пальцы кистей рук и стоп морщинистые, напоминающие руки прачки. Голос больного становится слабым, сиплым, затем он говорит только шепотом, позже развивается полная афония. Температура тела обычно снижается до субнормальных цифр.

Иммунитет. При выздоровлении возникает напряженный непродолжительный иммунитет.

Основной метод лабораторной диагностики – бактериологический.

Материалом для исследования могут быть выделения от больных и носителей (испражнения, рвотные массы, желчь), объекты окружающей среды (вода, пищевые продукты, белье, сточные воды, гидробионты, смывы с объектов окружающей среды).

Лечение проводится в двух напрвлениях: 1) регидратация (восполнение потерь жидкости и электролитов введением изотонических, апирогенных солевых растворов, а также плазмозаменяющих жидкостей внутривенно или перорально; 2) антибактериальная терапия (антибиотики широкого спектра действия: тетрациклины, хлорамфеникол, а также фторхинолоны).

Профилактика. Неспецифическая профилактика направлена на 1) разрыв путей передачи (предупреждение заноса инфекции на территорию страны, санитарно-просветительная работа с населением, обеспечение населения доброкачественной питьевой водой, канализацией, пищевыми продуктами, дезинфекцией); 2) своевременное выявление больного и носителя, госпитализация, лечение, карантин.

Специфическая профилактика - вакцинопрофилактика. Современная вакцина представляет собой комплексный препарат, состоящий из холероген-анатоксина (70%) и химического О-антигена (30%) обоих биоваров и сероваров. Прививка обеспечивает выработку вибриоцидных антител и антитоксинов в высоких титрах. Вакцинация населения проводится по эпидемическим показаниям.

Иерсинии.

К энтеропатогенным иерсиниям относят возбудителей псевдотуберкулеза и кишечного иерсиниоза. Возбудители данных заболеваний относятся к семейству Enterobacteriaceae , роду Yersinia , видам Y. Pseudotuberculosis , и Y. Enterocolitica .

Иерсинии – прямые грамотрицательные палочки иногда приобретающие сферическую форму. Спор, капсул не образуют. Неподвижны при 37 0 С, но ниже 30 0 С подвижны за счет перитрихиально расположенных жгутиков. Хорошо растут на обычных питательных средах. На Эндо образуют….., на иерсиниозной среде Y. Pseudotuberculosis образует сухие синие колонии с фестончатым краем, а Y. Enterocolitica синие сочные гладкие колонии.

Биохимическая активность для Y. Pseudotuberculosis: 1) продукция уреазы; 2) ферментация рамнозы; 3) отсутствие ферментации сахарозы; 4) отсутствие продукции индола. Для Y. Enterocolitica: 1) расщепление мочевины; 2) ферментация сахарозы; 3) отсутствие ферментации рамнозы; 4) продукция орнитиндекарбоксилазы.

Антигенная структура. Иерсинии имеют О-, К- и Н-антигены. По О- антигену внутри вида делятся на серовары.

Факторы патогенности: 1) продукция эндотоксина; 2) белок инвазии; 3) термолабильный энтеротоксин.

Эпидемиология. Кишечный иерсиниоз и псевдотуберкулез – это сапронозные инфекции. Иерсинии широко распространены в природе. Резервуаром возбудителя в природе является почва, вода, инфицированные через них растения. Инфицированная вода и растения способствуют распространению инфекции среди сельскохозяйственных животных. Резервуаром и источником инфекции могут быть крупный рогатый скот, свиньи, собаки, кошки, птицы, грызуны (мыши, крысы). Основные пути передачи – водный и алиментарный, через воду, молоко, овощи.

Клинические проявления. Патогенез и клиника этих заболеваний во многом сходны. Кишечные иерсиниозы и псевдотуберкулез характеризуются полиморфизмом клинических проявленийИнвазировав слизистую кишечника, возбудитель попадает в мезентериальные лимфатические узлы, вызывая мезентериальный лимфаденит – боли в эпигастральной области, симптомы раздражения брюшины, которые имитируют симптомы острого аппендицита. В случае прорыва лимфатического барьера наступает бактериемия, в результате которой микроб разносится по организму, вызывая образование гранулем и микроабсцессов в макрофагальных элементах печени, селезенки, легких, суставах. При этом происходит аллергизация организма. На 1-6 день появляется розеолезная сыпь. Возможен летальный исход. При всем разнообразии клинических проявлений можно выделить два четко очерченных типа клинических форм инфекций: при первом- заболевание протекает как гастроэнтероколит или мезентериальный лимфоаденит; при втором – развивается как результат бактеремии с симптомами вторичной очаговости и аллергическими проявлениями.

Микробиологическая диагностика. Используют бактериологический и серологический методы исследования. Материалом для бактериологического исследования служат: испражнения, ликвор, кровь, моча, аппендикс. Для серодиагностики в РНГА материалом служит сыворотка крови больного.

Специфическая профилактика не проводится. Этиотропная терапия: антибиотики, сульфаниламиды.

Фенотипическим признаком патогенного микроорганизма является его вирулентность , т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулентность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных животных). При этом учитывают вид животных, пол, массу тела, способ заражения, срок гибели.

К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Адгезия является пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность - способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других - кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др.

Инвазия. Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани.

Агрессия. Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы - ферменты, разрушающие иммуноглобулины; коагулаза - фермент, свертывающий плазму крови; фибринолизин - растворяющий сгусток фибрина; лецитиназа - фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано.

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины.

Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток.

Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК).

Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами.

При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин.

Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

Инфекционный процесс.

Учение об инфекции рассматривает свойства микробов, позволяющих им существовать в макроорганизме и оказывать на него патогенное воздействие с учетом защитно-приспособительных реакций макроорганизма на всех этапах развития болезни.

Термином "инфекция " или "инфекционный процесс " обозначают совокупность физиологических и патологических восстановительно-приспособительных реакций, возникающих в восприимчивом организме при определенных условиях окружающей среды в результате его взаимодействия с проникшими и размножающимися в нем патогенными или условно-патогенными бактериями, грибами и вирусами и направленных на поддержание постоянства внутренней среды макроорганизма (гомеостаза ). Сходный процесс, вызванный простейшими, гельминтами или насекомыми называется инвазия .

К группе белковых бактериальных токсинов относятся термолабильные и термостабильные белки, образуемые грам + и грам - патогенными бактериями с аэробным и анаэробным метаболизмом. Это ферменты, оказывающие свое повреждающее действие на макроорганизм в исключительно малых количествах. Могут секретироваться бактериальной клеткой в окружающую среду, либо находиться с клеткой в связанном состоянии, высвобождаясь при автолизе клетки.

По степени связи с бактериальной клеткой их делят на три класса:

Класс А - секретируемые во внешнюю среду;

Класс В - токсины, локализованные в периплазматическом пространстве, частично связанные с клеткой и частично секретируемые во внешнюю среду. Такие токсины называют мезотоксинами . Они не имеют сигнального пептида, поэтому не секретируются в окружающую среду. Высвобождение их происходит при слиянии с мембранами клетки и эксфолиации (отслоение, десквамация) клеточных мембран.

Класс С - токсины, прочно связанные с микробной клеткой и попадающие в окружающую среду только в результате гибели клетки.

По строению белковые токсины делят на простые и сложные .

Простые токсины образуются в виде единой полипептидной цепи или протоксина, функционально неактивного, который под действием протеаз самого микроба либо протеаз представителей нормальной микрофлоры или протеаз клеток и тканей макроорганизма превращается в активную В-А-структуру . Часть В не обладает токсичностью. Это природный токсоид или анатоксин , который выполняя транспортную функцию, взаимодействует со специфическим рецептором на эукариотической клетке и, образуя канал в ее цитоплазматической мембране, обуславливает проникновение внутрь клетки токсической группы А или активатора . Она токсична только при наличии группы В, которая обеспечивает специфичность и органотропность действия токсина.

Сложные токсины представляют собой уже готовую бифункциональную структуру, состоящую из одной или нескольких групп В, соединенных с группой А. Субъединицы А и В синтезируются в клетке независимо и в последующем соединяются в единый комплекс.

Механизм действия белковых токсинов на макромолекулярном уровне состоит из нескольких стадий.

Ввиду того , что белковые токсины являются высокомолекулярными соединениями и самостоятельно не проникают через клеточные мембраны, необходима их диссоциация. На первой стадии белковый токсин за счет своих абордажных молекул В фиксируется на поверхности клетки, взаимодействуя со специфическими рецепторами различной химической природы, что ведет к образованию комплекса токсин-рецептор .

В течение второй стадии происходит активация токсина под действием протеаз по типу ограниченного протеолиза с последующим образованием бифункциональной А-В-структуры. Изменение конформационной структуры молекулы токсина ведет к раскрытию у нее каталитического центра и появлению ферментативной активности. Третья стадия заключается в трансмембранной транслокации части А в цитоплазму клетки, где она нарушает жизненно важные биохимические процессы в клетке, действуя на свои специфические мишени.

Высокая рецепторная специфичность части В и высокая избирательность катализа части А в совокупности обуславливают специфичность действия белкового токсина.

Бактериальные токсины сходны по структуре и целому ряду других свойств с сигнальными молекулами макроорганизма: гормонами, нейромедиаторами, интерферонами и др. В ходе лиганд-рецепторного взаимодействия с клетками макроорганизма они используют уже готовые структуры, участвующие в нейрогуморальной сигнализации. Являясь антиметаболитами сигнальных молекул макроорганизма, они первоначально имитируют их действие, а затем оказывают блокирующий эффект.

Универсальность белковых токсинов заключается в их полифункциональности , и не ограничивается их значением только как факторов патогенности. Их образование играет существенную роль в экологии бактерий, их существованию в природных биоценозах. Благодаря сходству строения с бактериоцинами, они оказывают токсическое воздействие на конкурентов, в том числе и на представителей нормальной микрофлоры макроорганизма. Обладая ферментативной активностью, они выполняют трофическую функцию жизнеобеспечения микробной клетки.

Белковые бактериальные токсины являются полноценными тимусзависимыми антигенами, к ним образуются антитоксины - специфические антитела, нейтрализующие их. Из белковых токсинов можно получить анатоксины , т.е. токсины, лишенные токсических свойств, но сохранивших антигенные свои свойства, что используется при проведении вакцинопрофилактики и серотерапии.

При применении антитоксических сывороток необходимо учитывать тот факт, что белковый токсин может быть нейтрализован антителами только тогда, когда он находится в крови или лимфе, а также на поверхности клетки. Специфическими антителами блокируется взаимодействие токсина со специфическими рецепторами, нарушается процесс диссоциации комплекса токсин-рецептор и транслокации части А в цитоплазму клетки-мишени. Через мембрану клетки антитела не проникают и нейтрализовать транслоцированную часть А на могут, чем объясняется отсутствие эффекта от серотерапии при несвоевременно начатом лечении.

По механизму действия белковые бактериальные токсины делятся на пять групп:

- повреждающие клеточные мембраны;

Ингибиторы синтеза белка;

Активирующие пути метаболизма, контролируемые вторичными посредниками (мессенджерами);