Финальные вероятности состояний онлайн. Уравнения Колмогорова

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем на примере графа, изображенного на рисунке 1. Будем полагать, что все переходы системы из состояния Si в Sj происходят под воздействием простейших потоков событий с интенсивностями??ij (i, j=0, 1, 2, 3); так, переход системы из состояния S0 в S1 будет происходить под воздействием потока отказов первого узла, а обратный переход из состояния S1 в S0 -- под воздействием потока "окончаний ремонтов" первого узла и т.п.

Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным. Рассматриваемая система S имеет четыре возможных состояния: S0, S1, S2, S3.

Вероятностью i-го состояния называется вероятность pi(f) того, что в момент t система будет находиться в состоянии Si. Очевидно, что для любого момента t сумма вероятностей всех состояний равна единице:

Рассмотрим систему в момент t и, задав малый промежуток?t, найдем вероятность p0(t+?t) того, что система в момент t+?t будет находиться в состоянии S0. Это достигается разными способами.

Система в момент t с вероятностью p0(t) находилась в состоянии S0, а за время?t не вышла из него.

Вывести систему из этого состояния можно суммарным простейшим потоком с интенсивностью (л01+л02), т.е. в соответствии с формулой, с вероятностью, приближенно равной (л01+л02)?t. А вероятность того, что система не выйдет из состояния S0, равна . Вероятность того, что система будет находиться в состоянии S0 по первому способу, равна по теореме умножения вероятностей:

Система в момент t с вероятностями p1(t) (или p2(t)) находилась в состоянии S1 или S2 и за время?t перешла в состояние S0.

Потоком интенсивностью л10 система перейдет в состояние S0 с вероятностью, приближенно равной??10?t (или??20?t). Вероятность того, что система будет находиться в состоянии S0 по этому способу, равна p1(t)??10?t. Применяя теорему сложения вероятностей, получим

Переходя к пределу при?t>0 (приближенные равенства, связанные с применением формулы, перейдут в точные), получим в левой части уравнения производную (обозначим ее для простоты):

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.

Рассуждая аналогично для других состояний системы S, можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

Сформулируем правило составления уравнений Колмогорова. В левой части каждого из них стоит производная вероятности i-го состояния. В правой части -- сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

В системе (14) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение.

Нужно задать начальные условия. Так, например, систему уравнений (14) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии S0, т.е. при начальных условиях p0(0)=1, p1(0)=p2(0)=p3(0)=0.

Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени. Особый интерес представляют вероятности системы рi(t) в предельном стационарном режиме, т.е. при t>?, которые называются предельными (или финальными) вероятностями состояний.

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.

Предельная вероятность состояния Si имеет четкий смысл: она показывает среднее относительное время пребывания системы в этом состоянии. Например, если предельная вероятность состояния S0, т.е. p0=0.5, то это означает, что в среднем половину времени система находится в состоянии S0.

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы S с графом состояний, изображенном на рисунке 1, такая система уравнений имеет вид:

Систему (15) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом, согласно которому слева в уравнениях стоит предельная вероятность данного состояния рi, умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа -- сумма произведений интенсивностей всех потоков, входящих в i-e состояние, на вероятности тех состояний, из которых эти потоки исходят.

Рассмотрим математическое описание марковского процесса с дискретными состояниями и непрерывным временем* на примере случайного процесса из примера 1, граф которого изображен на рис. 1. Будем полагать, что все переходы системы из состояния впроисходят под воздействием простейших потоков событий с интенсивностями; так, переход системы из состояниявбудет происходить под воздействием потока отказов первого узла, а обратный переход из состоянияв- под воздействием потока "окончаний ремонтов" первого узла и т.п.

Граф состояний системы с проставленными у стрелок интенсивностями будем называть размеченным (см. рис. 1). Рассматриваемая система имеет четыре возможных состояния:.

Вероятностью i-го состояния называется вероятность того, что в моментсистема будет находиться в состоянии. Очевидно, что для любого моментасумма вероятностей всех состояний равна единице:

Рассмотрим систему в момент и, задав малый промежуток, найдем вероятностьтого, что система в моментбудет находиться в состоянии. Это достигается разными способами.

1. Система в момент с вероятностьюнаходилась в состоянии, а за времяне вышла из него.

Вывести систему из этого состояния (см. граф на рис. 1) можно суммарным простейшим потоком с интенсивностью , т.е. в соответствии с формулой (7), с вероятностью, приближенно равной. А вероятность того, что система не выйдет из состояния, равна. Вероятность того, что система будет находиться в состояниипо первому способу (т.е. того, что находилась в состояниии не выйдет из него за время), равна по теореме умножения вероятностей:

2. Система в момент с вероятностями(или) находилась в состоянииилии за времяперешла в состояние.

Потоком интенсивностью (или- с- рис. 1) система перейдет в состояниес вероятностью, приближенно равной(или). Вероятность того, что система будет находиться в состояниипо этому способу, равна(или).

Применяя теорему сложения вероятностей, получим

Переходя к пределу при (приближенные равенства, связанные с применением формулы (7), перейдут в точные), получим в левой части уравнения производную(обозначим ее для простоты):

Получили дифференциальное уравнение первого порядка, т.е. уравнение, содержащее как саму неизвестную функцию, так и ее производную первого порядка.

Рассуждая аналогично для других состояний системы , можно получить систему дифференциальных уравнений Колмогорова для вероятностей состояний:

Сформулируем правило составления уравнений Колмогорова . В левой части каждого из них стоит производная вероятности i-го состояния. В правой части - сумма произведений вероятностей всех состояний (из которых идут стрелки в данное состояние) на интенсивности соответствующих потоков событий, минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность данного (i-го состояния).

В системе (9) независимых уравнений на единицу меньше общего числа уравнений. Поэтому для решения системы необходимо добавить уравнение (8).

Особенность решения дифференциальных уравнений вообще состоит в том, что требуется задать так называемые начальные условия, т.е. в данном случае вероятности состояний системы в начальный момент . Так, например, систему уравнений (9) естественно решать при условии, что в начальный момент оба узла исправны и система находилась в состоянии, т.е. при начальных условиях.

Уравнения Колмогорова дают возможность найти все вероятности состояний как функции времени . Особый интерес представляют вероятности системы впредельном стационарном режиме , т.е. при , которые называютсяпредельными (или финальными) вероятностями состояний.

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют.

Предельная вероятность состояния имеет четкий смысл: она показываетсреднее относительное время пребывания системы в этом состоянии . Например, если предельная вероятность состояния , т.е., то это означает, что в среднем половину времени система находится в состоянии.

Так как предельные вероятности постоянны, то, заменяя в уравнениях Колмогорова их производные нулевыми значениями, получим систему линейных алгебраических уравнений, описывающих стационарный режим. Для системы с графом состояний, изображенном на рис. 1), такая система уравнений имеет вид:

Систему (10) можно составить непосредственно по размеченному графу состояний, если руководствоваться правилом, согласно которому слева в уравнениях стоит предельная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в i-е состояние, на вероятности тех состояний, из которых эти потоки исходят.

7 ГЛАВА

Элементы теории случайных процессов и теории массового обслуживания

В главе рассматриваются:

    определение случайного процесса и его характеристики, понятие марковского случайного процесса;

    основные понятия теории массового обслуживания;

    потоки событий;

    уравнение Колмогорова;

    СМО с отказами;

    метод Монте-Карло.

Типовые задачи

Пример 7.1

Случайный процесс определяется формулой X (t ) = Xcoswt , где X случайная величина. Найти основные характеристики этого процесса, если М(Х) = а, D (X ) = а 2 .

Решение

На основании свойств математического ожидания и дисперсии имеем:

Корреляционную функцию найдем по формуле (7.1):

Нормированную корреляционную функцию найдем по формуле (7.2):

Пример 7.2

Построить граф состояний следующего случайного процесса: устройство S состоит из двух узлов, каждый из которых в случайный момент времени может выйти из строя, после чего мгновенно начинается ремонт узла, продолжающийся заранее неизвестное случайное время.

Решение

Возможные состояния системы: S 0 – оба узла исправны; S 1 – первый узел ремонтируется, второй исправен; S 2 – второй узел ремонтируется, первый исправен; S 3 - оба узла ремонтируются. Граф системы приведен на рис. 7.4.

Стрелка, направленная, например, из S 0 в S 1 , означает переход системы в момент отказа первого узла, из S 1 в S 0 – переход в момент окончания ремонта этого узла.

На графе отсутствуют стрелки из S 0 в S 3 и из S 1 в S 2 . Это объясняется тем, что выходы узлов из строя предполагаются независимыми друг от друга и, например, вероятностью одновременного выхода из строя двух узлов (переход из S 0 в S 3 ) или одновременного окончания ремонтов двух узлов (переход из S 3 в S 0 ) можно пренебречь.

Пример 7.3

На автоматическую телефонную станцию поступает простейший поток вызовов с интенсивностью альфа = 1,2 вызовов в минуту. Найти вероятность того, что за две минуты:

а) не придет ни одного вызова;

б) придет ровно один вызов;

в) придет хотя бы один вызов.

Решение

а) Случайная величина X – число вызовов за две минуты – распределена по закону Пуассона с параметром λτ = 1,2*2 = 2,4. Вероятность того, что вызовов не будет (m = 0), по формуле (7.5):

б) Вероятность одного вызова (m = 1):

в) Вероятность хотя бы одного вызова:

Пример 7.4

Найти предельные вероятности для системы S из примера 7.2, граф состояний которой приведен на рис. 7.4, при λ 01 = 1, λ 02 = 2, λ 10 = 2, λ 13 = 2, λ 20 = 3, λ 23 = 1, λ 31 = 3, λ 32 = 2.

Решение

Система алгебраических уравнений, описывающих стационарный режим для данной системы, имеет вид (7.14) или

(7.15)

(Здесь вместо одного «лишнего»уравнения системы (7.14) записали нормировочное условие(7.12).)

Решив систему (7.15), получим p 0 = 0,40, p 1 = 0,20, p 2 = 0,27, p 3 = 0,13, т.е. в предельном стационарном режиме системе S в среднем 40% времени будет находиться в состоянии S 0 (оба узла исправны), 20% - в состоянии S 1 (первый узел ремонтируется, второй работает), 27% - в состоянии S 2 (второй узел ремонтируется, первый работает) и 13% времени – в состоянии S 3 (оба узла ремонтируются).

Пример 7.5

Найти средний чистый доход от эксплуатации в стационарном режиме системы S в условиях примеров 7.2 и 7.4, если известно, что в единицу времени исправная работа первого и второго узлов приносит доход соответственно в 10 и 6 ден. ед., а их ремонт требует затрат соответственно в 4 и 2 ден. ед. Оценить экономическую эффективность имеющейся возможности уменьшения вдвое среднего времени ремонта каждого из двух узлов, если при этом придется вдвое увеличить затраты на ремонт каждого узла (в единицу времени).

Решение

Из примера 7.4 следует, что в среднем первый узел исправно работает долю времени, равную p 0 + р 2 = 0,40 + 0,27 = 0,67, а второй узел – p 0 + р 1 = 0,40 + 0,20 = 0,60. в то же время первый узел находится в ремонте в среднем долю времени, равную р 1 + р 3 = 0,20 + 0,13 = 0,33, а второй узел – р 2 3 = =0,27+0,13=0,40. Поэтому средний чистый доход в единицу времени от эксплуатации системы, т.е. разность между доходами и затратами, равен

D = 0,67*10+0,60*6-0,33*4-0,40*2 = 8,18 ден. ед.

Уменьшение вдвое среднего времени ремонта каждого из узлов в соответствии с (7.10) будет означать увеличение вдвое интенсивностей потока «окончаний ремонтов» каждого узла, т.е. теперь λ 10 = 4, λ 20 = 6, λ 31 = 6, λ 32 = 4 и система линейных алгебраических уравнений (7.14), описывающая стационарный режим системы S , вместе с нормировочным условием (7.12) примет вид:

Решив систему, получим р 0 = 0,60, р 1 = 0,15, р 2 = 0,20, р 3 = 0,05.

Учитывая, что р 0 + р 2 = 0,60 + 0,20 = 0,80, р 0 + р 1 = 0,60 + 0,15 = 0,75, р 1 + р 3 = 0,15 + 0,05 = 0,20, р 2 + р 3 = 0,20 + 0,05 = 0,25, а затраты на ремонт первого и второго узлов составляют теперь соответственно 8 и 4 ден. ед., вычислим средний чистый доход в единицу времени:

D 1 = 0,80*10+0,75*6-0,20*8-0,25*4 = 9,9 ден. ед.

Так как D 1 больше D (примерно на 20%), то экономическая целесообразность ускорения ремонтов узлов очевидна.

Пример 7.6


Процесс гибели и размножения представлен графом (рис.7.8). Найти предельные вероятности состояний.

Решение

По формуле (7.20) найдем

,

,
,

т.е. в установившемся стационарном режиме в среднем 70,6% времени система будет находится в состоянии S 0 , 17,6% - в состоянии S 1 и 11,8% - в состоянии S 2 .

Пример 7.7

Известно, что заявки на телефонные переговоры в телевизионном ателье поступают с интенсивностью Я, равной 90 заявок в час, а средняя продолжительность разговора по телефону t o 6 – 2 мин. Определить показатели эффективности работы СМО (телефонной связи) при наличии одного телефонного номера.

Решения

Имеем λ = 90 (1/ч), t об = 2 мин. Интенсивность потока обслуживаний μ = 1/ t об = 1/2 = 0,5 (1/мин) = 30 (1/ч). По (7.24) относительная пропускная способность СМО Q = 30/(90+30) = 0,25, т.е. в среднем только 25% поступающих заявок осуществят переговоры по телефону. Соответственно вероятность отказа в обслуживании составит P ОТК =0,75 (см. (7.25)). Абсолютная пропускная способность СМО по (7.26) A=90*0,25=22,5, т.е. в среднем в час будут обслужены 22,5 заявки на переговоры. Очевидно, что при наличии только одного телефонного номера

СМО будет плохо справляться с потоком заявок.

Пример 7.8

В условиях примера 7.7 определить оптимальное число телефонных номеров в телевизионном ателье, если условием оптимальности считать удовлетворение из каждых 100 заявок на переговоры в среднем не менее 90 заявок.

Решение

Интенсивность нагрузки канала по формуле (7.28) р =90/30=3, т.е. за время среднего (по продолжительности) телефонного разговора tоб = 2 мин поступает в среднем 3 заявки на переговоры.

Будем постепенно увеличивать число каналов (телефонных номеров) п = 2, 3, 4,... и определим по формулам (7.29), (7.32), (7.33) для получаемой n-канальной СМО характеристики обслуживания. Например, при п = 2 p o =(1 + 3 + 3 2 /2!) -1 = 0,118 ≈ 0,12;

Q = 1-(3 2 /2!)*0,118 ≈ 0,471; А = 90*0,471 = 42,4.

Значение характеристик СМО сведем в табл. 7.1.

Таблица 7.1

Характеристика обслуживания

Обозначение

Число каналов (телефонных номеров)

Относительная пропускная способность

Абсолютная пропускная способность

По условию оптимальности Q 0,9, следовательно, в телевизионном ателье необходимо установить 5 телефонных номеров (в этом случае Q = 0,90 – см. табл. 7.1). При этом в час будут обслуживаться в среднем 80 заявок (А = 80,1), а среднее число занятых телефонных номеров (каналов) по формуле (7.34) = 80, 1/30 = 2,67.

Пример 7.9

В вычислительный центр коллективного пользования с тремя ЭВМ поступают заказы от предприятий на вычислительные работы. Если работают все три ЭВМ, то вновь поступающий заказ не принимается, и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 ч. Интенсивность потока заявок 0,25 1/ч. Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение

По условию п=3, λ =0,25 (1/ч), t o 6 =3 (ч). Интенсивность потока обслуживаний μ=1/ t o 6 =1/3=0,33. Интенсивность нагрузки ЭВМ по формуле (7.28) р =0,25/0,33=0,75. Найдем предельные вероятности состояний:

по формуле (7.29):

p 0 =(1+0,75+0,75 2 /2!+0,75 3 /3!) -1 =0,476;

по формуле (7.30):

p 1 = 0,75*0,476 = 0,357; p 2 = (0,75 2 /2!)*0,476 = 0,134; p 3 = (0,75 3 /3!)*0,476 = 0,033,

т.е. в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% – имеется одна заявка (занята одна ЭВМ), 13,4% – две заявки (две ЭВМ), 3,3% времени – три заявки (заняты три ЭВМ).

Вероятность отказа (когда заняты все три ЭВМ), таким образом, Р 0ТК = р 3 = 0,033.

Согласно формуле (7.32) относительная пропускная способность центра Q = 1 – 0,033 = 0,967, т.е. в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

По формуле (7.33) абсолютная пропускная способность центра А = 0,250,967 = 0,242, т.е. в один час в среднем обслуживается 0,242 заявки.

Согласно формуле (7.34) среднее число занятых ЭВМ к = = 0,242/0,33 = 0,725, т.е. каждая из трех ЭВМ будет занята обслуживанием заявок в среднем лишь на 72,5/3 = 24,2%.

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих ЭВМ (с одной стороны, здесь высокая пропускная способность СМО, а с другой – значительный простой каналов обслуживания) и выбрать компромиссное решение.

    Случайный процесс определяется формулой X(t)= Хе(- t ) (t > 0), где X – случайная величина, распределенная по нормальному закону с параметрами а и а 2 . Найти математическое ожидание, дисперсию, корреляционную и нормированную корреляционную функции случайного процесса.

    Построить граф состояний следующего случайного процесса: система состоит из двух автоматов по продаже газированной воды, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.

    Построить граф состояний системы S , представляющей собой электрическую лампочку, которая в случайный момент времени может быть либо включена, либо выключена, либо выведена из строя.

    Среднее число заказов на такси, поступающих на диспетчерский пункт в одну минуту, равно 3. Найти вероятность того, что за две минуты поступит:

а) 4 вызова;

б) хотя бы один;

в) ни одного вызова.

(Поток заявок простейший.)

    Найти предельные вероятности для систем S , граф которых изображен на рис. 7.11 и 7.12.

    Рассматривается круглосуточная работа пункта проведения профилактического осмотра автомашин с одним каналом (одной группой проведения осмотра). На осмотр и выявление дефектов каждой машины затрачивается в среднем 0,5 ч. На осмотр поступает в среднем 36 машин в сутки. Потоки заявок и обслуживаний – простейшие. Если машина, прибывшая в пункт осмотра, не застает ни одного канала свободным, она покидает пункт осмотра необслуженной. Определить предельные вероятности состояний и характеристики обслуживания профилактического пункта осмотра.

    Решить задачу 7.15 для случая п = 4 канала (групп проведения осмотра). Найти минимальное число каналов, при котором относительная пропускная способность пункта осмотра будет не менее 0,9.

    Одноканальная СМО с отказами представляет собой одну телефонную линию, на вход которой поступает простейший поток вызовов с интенсивностью 0,4 вызовов/мин. Средняя продолжительность разговора 3 мин.; время разговора имеет показательное распределение. Найти предельные вероятности состояний и характеристики обслуживания СМО. Сравнить пропускную способность СМО с номинальной, которая была бы, если разговор длился в точности 3 мин., а заявки шли одна за другой регулярно, без перерывов.

    Имеется двухканальная простейшая СМО с отказами. На ее вход поступает поток заявок с интенсивностью 4 заявки/ч. Среднее время обслуживания одной заявки 0,8 ч. Каждая обслуженная заявка приносит доход 4 ден. ед. Содержание каждого канала обходится 2 ден. ед./ч. Выяснить, выгодно или невыгодно в экономическом отношении увеличить число каналов до трех.

Задания по вариантам

Варианты

Главы

Пусть имеется физическая система S с дискретными состояниями:

S 1 ,S 2 ,...,S n ,

в которой протекает марковский случайный процесс с непрерывным временем (непрерывная цепь Маркова). Граф состояний показан на рис. 23.

Предположим, что все интенсивности потоков событий, переводя­щих систему из состояния в состояние, постоянны:

другими словами, все потоки событий – простейшие (стационарные. пуассоновские) потоки.

Записав систему дифференциальных уравнений Колмогорова для вероятностей состояний и проинтегрировав эти уравнения при заданных начальных условиях, мы получим вероятности состояний, как функции времени, т. е. n функций:

p 1 (t), p 2 (t),…,p n (t),

при любом t дающих в сумме единицу: .

Поставим теперь следующий вопрос: что будет происходить с сис­темой S при t®¥? Будут ли функции p 1 (t), p 2 (t),…,p n (t) стремиться к каким-то пределам? Эти пределы, если они существуют, называются предельными (или «финальными») вероятностями состояний.

Можно доказать следующее общее положение. Если число состоя­ний системы S конечно и из каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности со­стояний существуют и не зависят от начального состояния системы .

На рис. 24 показан граф состояний, удовлетворяющий постав­ленному условию: из любого состояния система может рано или позд­но перейти в любое другое. Напротив, для системы, граф состояний которой показан на рис. 25, условие не выполнено. Очевидно, что если начальное состояние такой системы S 1 то, например, состояние S 6 при t®¥ может быть достигнуто, а если начальное состояние S 2 – не может.

Предположим, что поставленное условие выполнено, и предель­ные вероятности существуют:



(i = 1, 2,..., n). (6.1)

Предельные вероятности мы будем обозначать теми же буквами р 1 , р 2 , … р n , что и сами вероятности состояний, разумея подними на этот раз не переменные величины (функции времени), а постоянные числа.

Очевидно, предельные вероятности состоянии, так же как и допредельные, в сумме должны давать единицу:

Таким образом, при t®¥ в системе S устанавливается некоторый предельный стационарный режим: он состоит в том, что система случайным образом меняет свои состояния, но вероятность каждого из них уже не зависит от времени: каждое из состояний осу­ществляется с некоторой постоянной вероятностью. Каков смысл этой вероятности? Она представляет собой не что иное, как сред­нее относительное время пребывания си­стемы в данном состоянии. Например, если у системы S три возможных состояния: S 1 ,S 2 и S 3 , причем их предельные вероят­ности равны 0,2, 0,3 и 0,5, это означает, что после перехода к устано­вившемуся режиму система S в среднем две десятых времени будет находиться в состоянии S 1 три десятых – в состоянии S 2 и полови­ну времени – в состоянии S 3 . Возникает вопрос: как вычислить пре­дельные вероятности состояний р 1 , р 2 , … р n ?

Оказывается, для этого в системе уравнений Колмогорова, описывающих вероятности состояний, нужно положить все левые час­ти (производные) равными нулю.

Действительно, в предельном (установившемся) режиме все вероят­ности состояний постоянны, значит, их производные равны нулю.

Если все левые части уравнений Колмогорова для вероятностей состояний положить разными нулю, то система дифференциальных уравнений превратится в систему линейных алгеб­раических уравнений. Совместно с условием

(так называемым «нормировочным условием») эти уравнения дают возможность вычислить все предельные вероятности

р 1 , р 2 , … р n

Пример 1 . Физическая система S имеет возможные состояния: S l , S 2 , S 3 , S 4 , размеченный граф которых дан на рис. 26 (у каждой стрелки поставлено численное значение соответствующей интенсивности). Вычислить предельные ве­роятности состояний: р 1 , р 2 , р 3 , р 4 .

Решение . Пишем уравнения Колмогорова для вероятностей состояний:

(6.3)

Полагая левые части равными нулю, получим систему алгебраических уравнений для предельных вероятностей состояний:

(6.4)

Уравнения (6.4) – так называемые однородные уравнения (без свободного члена). Как известно из алгебры, эти уравнения определяют величины р 1 , р 2 , р 3 , р 4 только с точностью до постоянного множителя. К счастью, у нас есть нор­мировочное условие:

p 1 + p 2 + p 3 + p 4 = 1, (6.5)

которое, совместно с уравнениями (64), дает возможность найти все неизвест­ные вероятности.

Действительно, выразим из (6.4) все неизвестные вероятности через одну из них, например, через p 1 . Из первого уравнения:

p 3 = 5p 1

Подставляя во второе уравнение, получим:

р 2 = 2 p 1 + 2р 3 = 12 p 1 .

Четвертое уравнение дает:

p 4 = 1/2p 2 = 6 p 1 .

Подставляя все эти выражения вместо р 2 , р 3 , р 4 в нормировочное условие (6.5), получим

p 1 + 12p 1 + 5 p 1 + 6 p 1 = 1.

24 p 1 = 1, p 1 = 1/24, p 2 =12p 1 = 1/2.

p 3 = 5p 1 = 5/24. p 4 = 6 p 1 = 1/4.

Таким образом, предельные вероятности состояний получены, они равны;

p 1 = 1/24, p 2 = 1/2, p 3 = 5/24, p 4 = 1/4 (6.6)

Это значит, что в предельном, установившемся режиме система S будет проводить в состоянии S 1 в среднем одну двадцать четвертую часть времени, в состоянии S 2 – половину времени, в состоянии S 3 – пять двадцать четвертых и в состоянии S 4 – одну четверть времени.

Заметим, что решая эту задачу, мы совсем не пользовались одним из уравнений (6.4) – третьим. Нетрудно убедиться, что оно является следствием трех остальных: складывая все четыре уравнения, мы получим тождественный нуль. С равным успехом, решая систему, мы могли бы отбросить любое из четырех уравнений (6.4).

Примененный нами способ составления алгебраических уравнений для предельных вероятностей состояний сводился к следующему: сперва написать дифференциальные уравнения, а затем положить в них левые части равными ну­лю Однако можно записать алгебраические уравнения для предельных вероят­ностей и непосредственно, не проходя через этап дифференциальных. Проиллюстрируем это на примере.

Пример 2 . Граф состоянии системы показан на рис. 27. Написать ал­гебраические уравнения для предельных вероятностей состояний.

Решение . Не записывая дифференциальных уравнений, прямо пишем соот­ветствующие правые части и приравниваем их нулю; чтобы не иметь дела с от­рицательными членами, сразу переносим их в другую часть, меняя знак:

(6.7)

Чтобы в дальнейшем сразу же писать такие уравнения, полезно запом­нить следующее мнемоническое правило: «что втекает, то и вытекает», то есть для каждого состояния сумма членов, соответствующих входящим стрелкам, рав­на сумме членов, соответствующих выходящим; каждый член равен интенсивнос­ти потока событий, переводящего систему по данной стрелке, умноженной на вероятность того состояния, из которого выходит стрелка.

В дальнейшем мы во всех случаях будем пользоваться именно этим кратчай­шим способом записи уравнений для предельных вероятностей.

Пример 3 . Написать алгебраические уравнения для предельных вероят­ностей состояний системы S , граф состояний которой дан на рис. 28. Решить эти уравнения.

Решение. Пишем алгебраические уравнения для предельных вероятно­стей состояний;

Нормировочное условие;

p 1 + p 2 + p 3 = 1 . (6.9)

Выразим с помощью первых двух уравнений (6.8) р 2 и р 3 через р 1:

Подставим их в нормировочное условие (6.9):

,

откуда .

; .

Построить граф состояний следующего случайного процесса: система состоит из двух аппаратов по продаже билетов, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.

Решение:

Система может находиться в четырех состояниях, так как у каждого аппарата по продаже билетов есть два состояния (быть занятым или свободным). Пусть S 0 - оба аппарата заняты; S 1 - 1-ый занят, 2-ой свободен; S 2 - 1-ый свободен, 2-ой занят; S 3 - оба аппарата свободны. Построим граф состояний, отметив на нем все возможные состояния кругами, а возможные переходы из состояния в состояние обозначим стрелками. Получаем, что переход из S 0 в S 3 возможен либо через S 1 , либо через S 2 , либо напрямик, как показано на рисунке 4.

Рисунок 4 - Граф состояний аппаратов по продаже билетов

Найти предельные вероятности для системы S, граф которой изображен на рисунке.

Решение:

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют. Их можно найти из уравнений Колмогорова, составив систему по данному размеченному графу состояний, по следующему правилу:

Слева в уравнении стоит предельная вероятность данного состояния p i , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в данное состояние, на вероятности тех состояний, из которых эти состояния выходят.

Кроме этого надо учитывать, что сумма всех вероятностей данной конечной системы равна единице. Составим уравнения для состояний S 1 и S 2 (уравнение для состояния S 0 - «лишнее»):

Ответ: Система примерно 66,67% времени пребывает в состоянии S 0 , 25% - в состоянии S 1 и 8,33% времени находится в состоянии S 2 .

Найти валовой выпуск для сбалансированной многоотраслевой экономики в модели Леонтьева, если дана матрица прямых затрат А и вектор конечного потребления У:

Решение:

Для сбалансированной многоотраслевой экономики выполняется следующее соотношение:

Выразим валовой выпуск через конечное потребление и матрицу затрат:

Находим матрицу, обратную к (Е - А):

Найдем валовой выпуск:

Ответ: Валовой выпуск равен (811,3; 660,4).

*При решении задач использовался